Low cost rare earth elements deposition method for enhancing the oxidation resistance at high temperature of Cr2O3 and Al2O3 forming alloys

2001 ◽  
Vol 323-324 ◽  
pp. 70-73 ◽  
Author(s):  
A Paúl ◽  
S Elmrabet ◽  
J.A Odriozola
Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1144
Author(s):  
Laihao Yu ◽  
Yingyi Zhang ◽  
Tao Fu ◽  
Jie Wang ◽  
Kunkun Cui ◽  
...  

Traditional refractory materials such as nickel-based superalloys have been gradually unable to meet the performance requirements of advanced materials. The Mo-Si-based alloy, as a new type of high temperature structural material, has entered the vision of researchers due to its charming high temperature performance characteristics. However, its easy oxidation and even “pesting oxidation” at medium temperatures limit its further applications. In order to solve this problem, researchers have conducted large numbers of experiments and made breakthrough achievements. Based on these research results, the effects of rare earth elements like La, Hf, Ce and Y on the microstructure and oxidation behavior of Mo-Si-based alloys were systematically reviewed in the current work. Meanwhile, this paper also provided an analysis about the strengthening mechanism of rare earth elements on the oxidation behavior for Mo-Si-based alloys after discussing the oxidation process. It is shown that adding rare earth elements, on the one hand, can optimize the microstructure of the alloy, thus promoting the rapid formation of protective SiO2 scale. On the other hand, it can act as a diffusion barrier by producing stable rare earth oxides or additional protective films, which significantly enhances the oxidation resistance of the alloy. Furthermore, the research focus about the oxidation protection of Mo-Si-based alloys in the future was prospected to expand the application field.


Alloy Digest ◽  
2001 ◽  
Vol 50 (5) ◽  

Abstract Aluchrom I SE is an oxidation resistant ferritic stainless steel alloyed with aluminum and rare earth elements. Applications include framework for catalytic automobile muffler systems. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-823. Producer or source: Krupp VDM.


Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 567 ◽  
Author(s):  
Željka Fiket ◽  
Ana Galović ◽  
Gordana Medunić ◽  
Martina Furdek Turk ◽  
Maja Ivanić ◽  
...  

Rare earth elements, i.e., lanthanides, are important components of many recently developed technology applications. However, their increasing use in the industrial sector, medicine, and agriculture over the last few decades has provided them with the title of “new pollutants”. Different methods are now applied for the removal of various pollutants from wastewaters, whereby the emphasis is placed on adsorption due to its simplicity, high efficiency, and low cost. In the present study, geopolymers prepared from coal ash were examined regarding their capacity for the adsorption of lanthanides from model solutions. The obtained results indicate the efficient removal of lanthanides by prepared geopolymers, depicting them as effective adsorbents for this group of elements.


2012 ◽  
Vol 557-559 ◽  
pp. 108-111
Author(s):  
Xiao Liu ◽  
Hu Fei Zhang

The oxidation resistance and high temperature mechanical properties of FeCrNi heat-resisting steel are analyzed and studied. The results show that the oxidation resistance of the heat-resisting steel is improved remarkably after adding RE. The value of oxidation rate of Sample 1 (without adding RE) is 1.71 times higher than Sample 2, respectively at 1423K. And the value of oxidation rate of Sample 1 is 1.4 times higher than Sample 2, respectively at 1473K. The fracture mode of heat-resisting stainless steel is typical cleavage fracture, but dimple fracture after adding RE into the steel. The high temperature mechanical properties of heat-resisting steel is improved obviously by RE. In comparison with heat-resisting stainless steel without RE, the reduction of area of heat-resisting stainless steel with RE is increased 26.27% at 1123K.


Sign in / Sign up

Export Citation Format

Share Document