REE4EU: integrated high temperature electrolysis (HTE) and Ion Liquid Extraction (ILE) for a strong and independent European Rare Earth Elements Supply Chain – Horizon 2020

Impact ◽  
2017 ◽  
Vol 2017 (5) ◽  
pp. 32-34
Author(s):  
Ana Maria Martinez
Alloy Digest ◽  
2001 ◽  
Vol 50 (5) ◽  

Abstract Aluchrom I SE is an oxidation resistant ferritic stainless steel alloyed with aluminum and rare earth elements. Applications include framework for catalytic automobile muffler systems. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-823. Producer or source: Krupp VDM.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 388
Author(s):  
Silvester Jürjo ◽  
Liis Siinor ◽  
Carolin Siimenson ◽  
Päärn Paiste ◽  
Enn Lust

Estonian phosphorite ore contains trace amounts of rare earth elements (REEs), many other d-metals, and some radioactive elements. Rare earth elements, Mo, V, etc. might be economically exploitable, while some radioactive and toxic elements should be removed before any other downstream processing for environmental and nutritional safety reasons. All untreated hazardous elements remain in landfilled waste in much higher concentration than they occur naturally. To resolve this problem U, Th, and Tl were removed from phosphorite ore at first using liquid extraction. In the next step, REE were isolated from raffinate. Nitrated Aliquat 336 (A336[NO3]) and Bis(2-ethylhexyl) Phosphate (D2EHPA) were used in liquid extraction for comparison. An improved method for exclusive separation of radioactive elements and REEs from phosphorite ore in 2-steps has been developed, exploiting liquid extraction at different pH values.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1144
Author(s):  
Laihao Yu ◽  
Yingyi Zhang ◽  
Tao Fu ◽  
Jie Wang ◽  
Kunkun Cui ◽  
...  

Traditional refractory materials such as nickel-based superalloys have been gradually unable to meet the performance requirements of advanced materials. The Mo-Si-based alloy, as a new type of high temperature structural material, has entered the vision of researchers due to its charming high temperature performance characteristics. However, its easy oxidation and even “pesting oxidation” at medium temperatures limit its further applications. In order to solve this problem, researchers have conducted large numbers of experiments and made breakthrough achievements. Based on these research results, the effects of rare earth elements like La, Hf, Ce and Y on the microstructure and oxidation behavior of Mo-Si-based alloys were systematically reviewed in the current work. Meanwhile, this paper also provided an analysis about the strengthening mechanism of rare earth elements on the oxidation behavior for Mo-Si-based alloys after discussing the oxidation process. It is shown that adding rare earth elements, on the one hand, can optimize the microstructure of the alloy, thus promoting the rapid formation of protective SiO2 scale. On the other hand, it can act as a diffusion barrier by producing stable rare earth oxides or additional protective films, which significantly enhances the oxidation resistance of the alloy. Furthermore, the research focus about the oxidation protection of Mo-Si-based alloys in the future was prospected to expand the application field.


Sign in / Sign up

Export Citation Format

Share Document