The infrared processing in multicrystalline silicon solar cell low-cost technology

2003 ◽  
Vol 76 (4) ◽  
pp. 529-534 ◽  
Author(s):  
P. Panek ◽  
M. Lipiński ◽  
R. Ciach ◽  
K. Drabczyk ◽  
E. Bielańska
2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
U. Gangopadhyay ◽  
K. Kim ◽  
S. K. Dhungel ◽  
H. Saha ◽  
J. Yi

The low-cost chemical bath deposition (CBD) technique is used to prepare CBD-ZnS films as antireflective (AR) coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min.), good film uniformity (standard deviation <1), and refractive index (2.35) along with a low percentage of average reflection (6-7%) on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm) multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hsi-Chien Liu ◽  
Gou-Jen Wang

The object of this paper is to develop a high antireflection silicon solar cell. A novel two-stage metal-assisted etching (MAE) method is proposed for the fabrication of an antireflective layer of a micronanohybrid structure array. The processing time for the etching on an N-type high-resistance (NH) silicon wafer can be controlled to around 5 min. The resulting micronanohybrid structure array can achieve an average reflectivity of 1.21% for a light spectrum of 200–1000 nm. A P-N junction on the fabricated micronanohybrid structure array is formed using a low-cost liquid diffusion source. A high antireflection silicon solar cell with an average efficiency of 13.1% can be achieved. Compared with a conventional pyramid structure solar cell, the shorted circuit current of the proposed solar cell is increased by 73%. The major advantage of the two-stage MAE process is that a high antireflective silicon substrate can be fabricated cost-effectively in a relatively short time. The proposed method is feasible for the mass production of low-cost solar cells.


2021 ◽  
Vol 14 (11) ◽  
pp. 115502
Author(s):  
Zechen Hu ◽  
Dehang Lin ◽  
Xuegong Yu ◽  
Christoph Seiffert ◽  
Andrej Kuznetsov ◽  
...  

Silicon ◽  
2021 ◽  
Author(s):  
S. Santhosh ◽  
R. Rajasekar ◽  
V. K. Gobinath ◽  
C. Moganapriya ◽  
S. Arun Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document