hydrogen passivation
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 40)

H-INDEX

42
(FIVE YEARS 2)

2022 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Vladislav V. Shunaev ◽  
Olga E. Glukhova

Graphene nanomesh (GNM) is one of the most intensively studied materials today. Chemical activity of atoms near GNM’s nanoholes provides favorable adsorption of different atoms and molecules, besides that, GNM is a prospect material for growing carbon nanotubes (CNTs) on its surface. This study calculates the dependence of CNT’s growing parameters on the geometrical form of a nanohole. It was determined by the original methodic that the CNT’s growing from circle nanoholes was the most energetically favorable. Another attractive property of GNM is a tunable gap in its band structure that depends on GNM’s topology. It is found by quantum chemical methods that the passivation of dangling bonds near the hole of hydrogen atoms decreases the conductance of the structure by 2–3.5 times. Controlling the GNM’s conductance may be an important tool for its application in nanoelectronics.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6615
Author(s):  
Szymon Łoś ◽  
Kazimierz Fabisiak ◽  
Kazimierz Paprocki ◽  
Mirosław Szybowicz ◽  
Anna Dychalska ◽  
...  

The undoped polycrystalline diamond films (PDFs) have been deposited on n-type silicon (Si) by Hot Filament Chemical Vapor Deposition (HF CVD) technique. The reaction gases are a mixture of methane and hydrogen. The obtained PDFs were characterized by scanning electron microscopy (SEM) and Raman spectroscopy which, in addition to the diamond phase, also confirms the presence of sp2 hybridized carbon bonds. As-grown CVD diamond layers are hydrogen terminated and show p-type conductivity. The effect of the level of hydrogenation on the electrical properties of p-diamond/n-Si heterojunctions has been investigated by temperature dependent current–voltage (J-V/T) characteristics. The obtained results suggest that the energy distribution of interface states at the grain boundary (GB) subjected to hydrogenation becomes shallower, and the hole capture cross-section can be reduced. Hydrogenation can lead to a significant reduction of the GB potential barrier. These results can be interesting from the point of view of hydrogen passivation of GBs in microelectronics.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6535
Author(s):  
Khabibulla A. Abdullin ◽  
Maratbek T. Gabdullin ◽  
Sultan K. Zhumagulov ◽  
Guzal A. Ismailova ◽  
Lesya V. Gritsenko ◽  
...  

Zinc oxide is a promising multifunctional material. The practical use of nano- and polycrystalline ZnO devices faces a serious problem of instability of electrical and luminescent characteristics, due to the adsorption of oxygen by the surface during aging. In this paper, the aging effect in ZnO films and nanorod arrays was studied. It was found that ZnO samples demonstrate different behavior of the degradation process, which corresponds to at least two different types of adsorbing surface sites for O2, where O2 adsorption is of a different nature. The first type of surface sites is rapidly depassivated after hydrogen passivation and the aging effect takes place due to these centers. The second type of surface sites has a stable structure after hydrogen passivation and corresponds to HO–ZnO sites. The XPS components of these sites include the Zn2p3/2 peak at 1022.2 ± 0.2 eV and Zn2p1/2 peak at 1045.2 ± 0.2 eV, with a part of the XPS O1s peak at 531.5 ± 0.3 eV. The annealing transforms the first type of site into the second one, and the subsequent short-term plasma treatment in hydrogen results in steady passivation, where the degradation of characteristics is practically reduced to zero.


Author(s):  
Brett Hallam ◽  
Matthew Wright ◽  
Alison Ciesla
Keyword(s):  

Author(s):  
Phillip Hamer ◽  
Brett Hallam ◽  
Chang Sun
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6722
Author(s):  
Jaesub Oh ◽  
Hyeong-sub Song ◽  
Jongcheol Park ◽  
Jong-Kwon Lee

To realize high-resolution thermal images with high quality, it is essential to improve the noise characteristics of the widely adopted uncooled microbolometers. In this work, we applied the post-metal annealing (PMA) process under the condition of deuterium forming gas, at 10 atm and 300 °C for 30 min, to reduce the noise level of amorphous-Si microbolometers. Here, the DC and temperature coefficient of resistance (TCR) measurements of the devices as well as 1/f noise analysis were performed before and after the PMA treatment, while changing the width of the resistance layer of the microbolometers with 35 μm or 12 μm pixel. As a result, the microbolometers treated by the PMA process show the decrease in resistance by about 60% and the increase in TCR value up to 48.2% at 10 Hz, as compared to the reference device. Moreover, it is observed that the noise characteristics are improved in inverse proportion to the width of the resistance layer. This improvement is attributed to the cured poly-silicon grain boundary through the hydrogen passivation by heat and deuterium atoms applied during the PMA, which leads to the uniform current path inside the pixel.


2021 ◽  
Vol 33 (38) ◽  
pp. 2170300
Author(s):  
Jieyuan Liu ◽  
Xin Wan ◽  
Shiyuan Liu ◽  
Xiaofang Liu ◽  
Lirong Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document