Bridging between micro- and macroscales of materials by mesoscopic models

2002 ◽  
Vol 24 (1-2) ◽  
pp. 1-13 ◽  
Author(s):  
B.I. Lundqvist ◽  
A. Bogicevic ◽  
S. Dudiy ◽  
P. Hyldgaard ◽  
S. Ovesson ◽  
...  
Keyword(s):  
2001 ◽  
Vol 173 (1) ◽  
pp. 364-390 ◽  
Author(s):  
David J. Horntrop ◽  
Markos A. Katsoulakis ◽  
Dionisios G. Vlachos

Author(s):  
Jordi Casas

Traditionally traffic demand models require as input the impedance of a demand with respect to the network supply; mode choice or departure choice for example, take into account the travel time for each option. Bearing this in mind, the main criticism of using static models to evaluate travel times is that the estimated travel time could diverge considerably because these models have no capacity constraints. On the other hand, dynamic models, such as mesoscopic models, have a level of detail that is sometimes unnecessarily high for the final requirements. The Quasi-dynamic model developed in Aimsun could contribute to a more realistic estimate of the travel time while avoiding the need for a full dynamic model. This paper presents the integration of a Quasi-dynamic model inside the integrated framework of Aimsun and evaluates a comparison of all models in terms of travel time estimation. The evaluation is performed using real networks validated with real data sets.DOI: http://dx.doi.org/10.4995/CIT2016.2016.4127


2013 ◽  
Vol 10 (3) ◽  
pp. 368-376 ◽  
Author(s):  
Galina K. Strukova ◽  
Gennady V. Strukov ◽  
Evgeniya Yu. Postnova ◽  
Alexander Yu. Rusanov ◽  
Ivan S. Veshchunov

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
WeiLun Yu ◽  
XiaoGang Wu ◽  
HaiPeng Cen ◽  
Yuan Guo ◽  
ChaoXin Li ◽  
...  

Abstract Background Bone is a hierarchically structured composite material, and different hierarchical levels exhibit diverse material properties and functions. The stress and strain distribution and fluid flow in bone play an important role in the realization of mechanotransduction and bone remodeling. Methods To investigate the mechanotransduction and fluid behaviors in loaded bone, a multiscale method was developed. Based on poroelastic theory, we established the theoretical and FE model of a segment bone to provide basis for researching more complex bone model. The COMSOL Multiphysics software was used to establish different scales of bone models, and the properties of mechanical and fluid behaviors in each scale were investigated. Results FE results correlated very well with analytical in macroscopic scale, and the results for the mesoscopic models were about less than 2% different compared to that in the macro–mesoscale models, verifying the correctness of the modeling. In macro–mesoscale, results demonstrated that variations in fluid pressure (FP), fluid velocity (FV), von Mises stress (VMS), and maximum principal strain (MPS) in the position of endosteum, periosteum, osteon, and interstitial bone and these variations can be considerable (up to 10, 8, 4 and 3.5 times difference in maximum FP, FV, VMS, and MPS between the highest and the lowest regions, respectively). With the changing of Young’s modulus (E) in each osteon lamella, the strain and stress concentration occurred in different positions and given rise to microscale spatial variations in the fluid pressure field. The heterogeneous distribution of lacunar–canalicular permeability (klcp) in each osteon lamella had various influence on the FP and FV, but had little effect on VMS and MPS. Conclusion Based on the idealized model presented in this article, the presence of endosteum and periosteum has an important influence on the fluid flow in bone. With the hypothetical parameter values in osteon lamellae, the bone material parameters have effect on the propagation of stress and fluid flow in bone. The model can also incorporate alternative material parameters obtained from different individuals. The suggested method is expected to provide dependable biological information for better understanding the bone mechanotransduction and signal transduction.


Sign in / Sign up

Export Citation Format

Share Document