scholarly journals On the possibility of radar echo detection of ultra-high energy cosmic ray- and neutrino-induced extensive air showers

2001 ◽  
Vol 15 (2) ◽  
pp. 177-202 ◽  
Author(s):  
Peter W Gorham
2005 ◽  
Vol 20 (29) ◽  
pp. 6869-6871 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

We present the characteristics and performance of a demonstration experiment devoted to the observation of ultra high-energy cosmic ray extensive air showers using a radiodetection technique. In a first step, one antenna narrowed band filtered acting as trigger, with a 4σ threshold above sky background-level, was used to tag any radio transient in coincidence on the antenna array. Recently, the addition of 4 particle detectors has allowed us to observe cosmic ray events in coincidence with antennas.


2010 ◽  
Vol 25 (20) ◽  
pp. 3953-3964
Author(s):  
A. GERANIOS ◽  
D. KOUTSOKOSTA ◽  
O. MALANDRAKI ◽  
H. ROSAKI-MAVROULI

Ultra-High Energy Cosmic Rays (UHECR) (E ≥ 5 × 1019 eV ) are detected through Extensive Air Showers that are created when a primary cosmic ray particle interacts with the atmosphere of the Earth. The energy of the primary particle can be estimated experimentally based on simulations. In this paper, we attempt to estimate the energy of UHECR gamma ray photons by applying a Monte Carlo simulation code and we compare the results with the ones derived in our previous papers for hadron initiated showers. The scenario of simulations is adapted to the P. Auger Observatory site.


2010 ◽  
Vol 25 (12) ◽  
pp. 2561-2571 ◽  
Author(s):  
A. GERANIOS ◽  
D. KOUTSOKOSTA ◽  
A. MASTICHIADIS ◽  
O. MALANDRAKI ◽  
H. ROSAKI-MAVROULI ◽  
...  

Ultra-High Energy Cosmic Rays (E ≥ 5 ×1019 eV ) are detected through Extensive Air Showers that are created when a primary cosmic ray particle interacts with the atmosphere of the Earth. The energy of the primary particle can be estimated experimentally based on simulations. In this paper we attempt to estimate the energy of UHECR hadrons ( He, Li, C, Fe ) by applying a Monte Carlo simulation code and we compare the results with the ones derived in our previous paper for proton initiated showers. The scenario of simulations is adapted to the P. Auger Observatory site.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Harm Schoorlemmer ◽  
Washington R. Carvalho

AbstractWe developed a radio interferometric technique for the observation of extensive air showers initiated by cosmic particles. In this proof-of-principle study we show that properties of extensive air showers can be derived with high accuracy in a straightforward manner. When time synchronisation below $$\sim $$ ∼ 1 ns between different receivers can be achieved, direction reconstruction resolution of $$< 0.2^\circ $$ < 0 . 2 ∘ and resolution on the depth of shower maximum of $$<10$$ < 10  g/cm$$^2$$ 2 are obtained over the full parameter range studied, with even higher accuracy for inclined incoming directions. In addition, by applying the developed method to dense arrays of radio antennas, the energy threshold for the radio detection of extensive air showers can be significantly lowered. The proposed method can be incorporated in operational and future cosmic particle observatories and with its high accuracy it has the potential to play a crucial role in unravelling the composition of the ultra-high-energy cosmic-particle flux.


2005 ◽  
Vol 20 (29) ◽  
pp. 6814-6816
Author(s):  
A. GERANIOS ◽  
E. FOKITIS ◽  
S. MALTEZOS ◽  
K. PATRINOS ◽  
A. DIMOPOULOS

Using the AIRES code, we have generated a large number of Extensive Air Showers corresponding to Ultra high energy cosmic ray gammas, protons and iron nuclei with energy range 1015 – 1022 eV. These simulations clearly show the different atmospheric depths of the Extensive Air Shower maxima in this energy range.


Author(s):  
A. Aab ◽  
◽  
P. Abreu ◽  
M. Aglietta ◽  
J. M. Albury ◽  
...  

Abstract The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between $$2\times 10^{17}$$2×1017 and $$2\times 10^{18}$$2×1018 eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector with those from the Auger fluorescence detector at $$10^{{17.5}}\, {\mathrm{eV}} $$1017.5eV and $$10^{{18}}\, {\mathrm{eV}} $$1018eV. We find that, for the models to explain the data, an increase in the muon density of $$38\%$$38%$$\pm 4\% (12\%)$$±4%(12%)$$\pm {}^{21\%}_{18\%}$$±18%21% for EPOS-LHC, and of $$50\% (53\%)$$50%(53%)$$\pm 4\% (13\%)$$±4%(13%)$$\pm {}^{23\%}_{20\%}$$±20%23% for QGSJetII-04, is respectively needed.


2019 ◽  
Vol 216 ◽  
pp. 02004 ◽  
Author(s):  
Fabrizia Canfora

The mass composition of ultra-high-energy cosmic rays plays a key role in the understanding of the origins ofthese rare particles. A composition-sensitive observable is the atmospheric depth at which the air shower reaches the maximum number of particles (Xmax). The Auger Engineering Radio Array (AERA) detects the radio emission inthe 30-80 MHz frequency band from extensive air showers with energies larger than 1017 eV. It consists of more than 150 autonomous radio stations covering an area of about 17 km2. From the distribution of signals measured by the antennas, it is possible to estimate Xmax. In this contribution three independent methods for the estimation of Xmax will be presented.


Sign in / Sign up

Export Citation Format

Share Document