Non-equilibrium particle morphology development in seeded emulsion polymerization. 1: penetration of monomer and radicals as a function of monomer feed rate during second stage polymerization

1999 ◽  
Vol 153 (1-3) ◽  
pp. 255-270 ◽  
Author(s):  
Jeffrey Stubbs ◽  
Ola Karlsson ◽  
Jan-Eric Jönsson ◽  
Eric Sundberg ◽  
Yvon Durant ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 596
Author(s):  
Chang Liu ◽  
Amit K. Tripathi ◽  
Wei Gao ◽  
John G. Tsavalas

Waterborne latex is often called a product-of-process. Here, the effect of semi-batch monomer feed rate on the kinetics and gel formation in seeded emulsion polymerization was investigated for the copolymerization of n-butyl methacrylate (n-BMA) and ethylene glycol dimethacrylate (EGDMA). Strikingly, the gel fraction was observed to be significantly influenced by monomer feed rate, even while most of the experiments were performed under so-called starve-fed conditions. More flooded conditions from faster monomer feed rates, including seeded batch reactions, counterintuitively resulted in significantly higher gel fraction. Chain transfer to polymer was intentionally suppressed here via monomer selection so as to focus mechanistic insights to relate only to the influence of a divinyl monomer, as opposed to being clouded by contributions to topology from long chain branching. Simulations revealed that the dominant influence on this phenomenon was the sensitivity of primary intramolecular cyclization to the instantaneous unreacted monomer concentration, which is directly impacted by monomer feed rate. The rate constant for cyclization for these conditions was determined to be first order and 4000 s−1, approximately 4 times that typically observed for backbiting in acrylates. This concept has been explored previously for bulk and solution polymerizations, but not for emulsified reaction environments and especially for the very low mole fraction divinyl monomer. In addition, while gel fraction could be dramatically manipulated by variations in linear monomer feed rates, it could be markedly enhanced by leveraging non-linear feed profiles built from combination sequences of flooded and starved conditions. For a 2 h total feed time, a fully linear profile resulted in 30% gel while a corresponding non-linear profile with an early fast-feed segment resulted in 80% gel.


Author(s):  
O. L. Shaffer ◽  
M.S. El-Aasser ◽  
C. L. Zhao ◽  
M. A. Winnik ◽  
R. R. Shivers

Transmission electron microscopy is an important approach to the characterization of the morphology of multiphase latices. Various sample preparation techniques have been applied to multiphase latices such as OsO4, RuO4 and CsOH stains to distinguish the polymer phases or domains. Radiation damage by an electron beam of latices imbedded in ice has also been used as a technique to study particle morphology. Further studies have been developed in the use of freeze-fracture and the effect of differential radiation damage at liquid nitrogen temperatures of the latex particles embedded in ice and not embedded.Two different series of two-stage latices were prepared with (1) a poly(methyl methacrylate) (PMMA) seed and poly(styrene) (PS) second stage; (2) a PS seed and PMMA second stage. Both series have varying amounts of second-stage monomer which was added to the seed latex semicontinuously. A drop of diluted latex was placed on a 200-mesh Formvar-carbon coated copper grid.


Soft Matter ◽  
2012 ◽  
Vol 8 (20) ◽  
pp. 5493 ◽  
Author(s):  
Ryan D. Roeder ◽  
Parul Rungta ◽  
Volodymyr Tsyalkovskyy ◽  
Yurii Bandera ◽  
Stephen H. Foulger

Sign in / Sign up

Export Citation Format

Share Document