Computational modeling of vapor cloud explosions in off-shore rigs using a flame-speed based combustion model

2002 ◽  
Vol 15 (5) ◽  
pp. 391-401 ◽  
Author(s):  
J.K. Clutter ◽  
J. Mathis
Author(s):  
Holler Tadej ◽  
Ed M. J. Komen ◽  
Kljenak Ivo

The paper presents the computational fluid dynamics (CFD) combustion modeling approach based on two combustion models. This modeling approach was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont's turbulent flame-speed closure (TFC) model and Lipatnikov's flame-speed closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in nuclear power plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However, substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


Author(s):  
Tadej Holler ◽  
Varun Jain ◽  
Ed M. J. Komen ◽  
Ivo Kljenak

The CFD combustion modeling approach based on two combustion models was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont’s Turbulent Flames Speed Closure (TFC) model and Lipatnikov’s Flame Speed Closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in Nuclear Power Plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


2011 ◽  
Vol 681 ◽  
pp. 340-369 ◽  
Author(s):  
JEFFREY M. BERGTHORSON ◽  
SEAN D. SALUSBURY ◽  
PAUL E. DIMOTAKIS

The hydrodynamics of a reacting impinging laminar jet, or stagnation flame, is studied experimentally and modelled using large activation energy asymptotic models and numerical simulations. The jet-wall geometry yields a stable, steady flame and allows for precise measurement and specification of all boundary conditions on the flow. Laser diagnostic techniques are used to measure velocity and CH radical profiles. The axial velocity profile through a premixed stagnation flame is found to be independent of the nozzle-to-wall separation distance at a fixed nozzle pressure drop, in accord with results for non-reacting impinging laminar jet flows, and thus the strain rate in these flames is only a function of the pressure drop across the nozzle. The relative agreement between the numerical simulations and experiment using a particular combustion chemistry model is found to be insensitive to both the strain rate imposed on the flame and the relative amounts of oxygen and nitrogen in the premixed gas, when the velocity boundary conditions on the simulations are applied in a manner consistent with the formulation of the streamfunction hydrodynamic model. The analytical model predicts unburned, or reference, flame speeds that are slightly lower than the detailed numerical simulations in all cases and the observed dependence of this reference flame speed on strain rate is stronger than that predicted by the model. Experiment and simulation are in excellent agreement for near-stoichiometric methane–air flames, but deviations are observed for ethylene flames with several of the combustion models used. The discrepancies between simulation and experimental profiles are quantified in terms of differences between measured and predicted reference flame speeds, or position of the CH-profile maxima, which are shown to be directly correlated. The direct comparison of the measured and simulated reference flame speeds, ΔSu, can be used to infer the difference between the predicted flame speed of the combustion model employed and the true laminar flame speed of the mixture, ΔSOf, i.e. ΔSu=ΔSOf, consistent with recently proposed nonlinear extrapolation techniques.


2012 ◽  
Vol 13 (5) ◽  
pp. 464-481 ◽  
Author(s):  
Udo Gerke ◽  
Konstantinos Boulouchos

The mixture formation and combustion process of a hydrogen direct-injection internal combustion engine is computed using a modified version of a commercial three-dimensional computational fluid dynamics code. The aim of the work is the evaluation of hydrogen laminar flame speed correlations and turbulent flame speed closures with respect to combustion of premixed and stratified mixtures at various levels of air-to-fuel equivalence ratio. Heat-release rates derived from in-cylinder pressure traces are used for the validation of the combustion simulations. A turbulent combustion model with closures for a turbulent flame speed is investigated. The value of the computed heat-release rates mainly depends on the quality of laminar burning velocities and standard of turbulence quantities provided to the combustion model. Combustion simulations performed with experimentally derived laminar flame speed data give better results than those using laminar flame speeds obtained from a kinetic scheme. However, experimental data of hydrogen laminar flame speeds found in the literature are limited regarding the range of pressures, temperatures and air-to-fuel equivalence ratios, and do not comply with the demand of high-pressure engine-relevant conditions.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4210
Author(s):  
Alessandro d’Adamo ◽  
Clara Iacovano ◽  
Stefano Fontanesi

Turbulent combustion modelling in internal combustion engines (ICEs) is a challenging task. It is commonly synthetized by incorporating the interaction between chemical reactions and turbulent eddies into a unique term, namely turbulent flame speed sT. The task is very complex considering the variety of turbulent and chemical scales resulting from engine load/speed variations. In this scenario, advanced turbulent combustion models are asked to predict accurate burn rates under a wide range of turbulence–flame interaction regimes. The framework is further complicated by the difficulty in unambiguously evaluating in-cylinder turbulence and by the poor coherence of turbulent flame speed (sT) measurements in the literature. Finally, the simulated sT from combustion models is found to be rarely assessed in a rigorous manner. A methodology is presented to objectively measure the simulated sT by a generic combustion model over a range of engine-relevant combustion regimes, from Da = 0.5 to Da = 75 (i.e., from the thin reaction regime to wrinkled flamelets). A test case is proposed to assess steady-state burn rates under specified turbulence in a RANS modelling framework. The methodology is applied to a widely adopted combustion model (ECFM-3Z) and the comparison of the simulated sT with experimental datasets allows to identify modelling improvement areas. Dynamic functions are proposed based on turbulence intensity and Damköhler number. Finally, simulations using the improved flame speed are carried out and a satisfactory agreement of the simulation results with the experimental/theoretical correlations is found. This confirms the effectiveness and the general applicability of the methodology to any model. The use of grid/time resolution typical of ICE combustion simulations strengthens the relevance of the proposed dynamic functions. The presented analysis allows to improve the adherence of the simulated burn rate to that of literature turbulent flames, and it unfolds the innovative possibility to objectively test combustion models under any prescribed turbulence/flame interaction regime. The solid data-driven representation of turbulent combustion physics is expected to reduce the tuning effort in ICE combustion simulations, providing modelling robustness in a very critical area for virtual design of innovative combustion systems.


Author(s):  
Ratnak Sok ◽  
Jin Kusaka ◽  
Kyohei Yamaguchi

Abstract A quasi-dimensional (QD) simulation model is a preferred method to predict combustion in the gasoline engines with reliable results and shorter calculation time compared with multi-dimensional simulation. The combustion phenomena in spark ignition (SI) engines are highly turbulent, and at initial stage of the combustion process, turbulent flame speed highly depends on laminar burning velocity SL. A major parameter of the QD combustion model is an accurate prediction of the SL, which is unstable under low engine speed and ultra-lean mixture. This work investigates the applicability of the combustion model for evaluating the combustion characteristics of a high-tumble port gasoline engine operated under ultra-lean mixture (equivalence ratio up to ϕ = 0.5) which is out of the range of currently available SL functions initially developed for a single component fuel. In this study, the SL correlation is improved for a gasoline surrogate fuel (5 components). Predicted SL data from the conventional and improved functions are compared with experimental SL data taken from a constant-volume chamber under micro-gravity condition. The SL measurements are done at reference conditions at temperature of 300K, pressure of 0.1MPaa, and at elevated conditions whose temperature = 360K, pressure = 0.1, 0.3, and 0.5 MPaa. Results show that the conventional SL model over-predicts flame speeds under all conditions. Moreover, the model predicts negative SL at very lean (ϕ ≤ 0.3) and rich (ϕ ≥ 1.9) mixture while the revised SL is well validated with the measured data. The improved SL formula is then incorporated into the QD combustion model by a user-defined function in GT-Power simulation. The engine experimental data are taken at 1000 RPM and 2000 RPM under engine load IMEPn = 0.4–0.8 MPa (with 0.1 increment) and ϕ ranges are up to 0.5. The results shows that the simulated engine performances and combustion characteristics are well validated with the experiments within 6% accuracy by using the QD combustion model coupled with the improved SL. A sensitivity analysis of the model is also in good agreement with the experiments under cyclic variation (averaged cycle, high IMEP or stable cycle, and low IMEP or unstable cycle).


Sign in / Sign up

Export Citation Format

Share Document