scholarly journals A Data-Driven Methodology for the Simulation of Turbulent Flame Speed across Engine-Relevant Combustion Regimes

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4210
Author(s):  
Alessandro d’Adamo ◽  
Clara Iacovano ◽  
Stefano Fontanesi

Turbulent combustion modelling in internal combustion engines (ICEs) is a challenging task. It is commonly synthetized by incorporating the interaction between chemical reactions and turbulent eddies into a unique term, namely turbulent flame speed sT. The task is very complex considering the variety of turbulent and chemical scales resulting from engine load/speed variations. In this scenario, advanced turbulent combustion models are asked to predict accurate burn rates under a wide range of turbulence–flame interaction regimes. The framework is further complicated by the difficulty in unambiguously evaluating in-cylinder turbulence and by the poor coherence of turbulent flame speed (sT) measurements in the literature. Finally, the simulated sT from combustion models is found to be rarely assessed in a rigorous manner. A methodology is presented to objectively measure the simulated sT by a generic combustion model over a range of engine-relevant combustion regimes, from Da = 0.5 to Da = 75 (i.e., from the thin reaction regime to wrinkled flamelets). A test case is proposed to assess steady-state burn rates under specified turbulence in a RANS modelling framework. The methodology is applied to a widely adopted combustion model (ECFM-3Z) and the comparison of the simulated sT with experimental datasets allows to identify modelling improvement areas. Dynamic functions are proposed based on turbulence intensity and Damköhler number. Finally, simulations using the improved flame speed are carried out and a satisfactory agreement of the simulation results with the experimental/theoretical correlations is found. This confirms the effectiveness and the general applicability of the methodology to any model. The use of grid/time resolution typical of ICE combustion simulations strengthens the relevance of the proposed dynamic functions. The presented analysis allows to improve the adherence of the simulated burn rate to that of literature turbulent flames, and it unfolds the innovative possibility to objectively test combustion models under any prescribed turbulence/flame interaction regime. The solid data-driven representation of turbulent combustion physics is expected to reduce the tuning effort in ICE combustion simulations, providing modelling robustness in a very critical area for virtual design of innovative combustion systems.

Author(s):  
Holler Tadej ◽  
Ed M. J. Komen ◽  
Kljenak Ivo

The paper presents the computational fluid dynamics (CFD) combustion modeling approach based on two combustion models. This modeling approach was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont's turbulent flame-speed closure (TFC) model and Lipatnikov's flame-speed closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in nuclear power plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However, substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


Author(s):  
Tadej Holler ◽  
Varun Jain ◽  
Ed M. J. Komen ◽  
Ivo Kljenak

The CFD combustion modeling approach based on two combustion models was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont’s Turbulent Flames Speed Closure (TFC) model and Lipatnikov’s Flame Speed Closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in Nuclear Power Plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2425-2438 ◽  
Author(s):  
Mohammed Alhumairi ◽  
Özgür Ertunç

Lean premixed combustion under the influence of active-grid turbulence was computationally investigated, and the results were compared with experimental data. The experiments were carried out to generate a premixed flame at a thermal load of 9 kW from a single jet flow combustor. Turbulent combustion models, such as the coherent flame model and turbulent flame speed closure model were implemented for the simulations performed under different turbulent flow conditions, which were specified by the Reynolds number based on Taylor?s microscale, the dissipation rate of turbulence, and turbulent kinetic energy. This study shows that the applied turbulent combustion models differently predict the flame topology and location. However, similar to the experiments, simulations with both models revealed that the flame moves toward the inlet when turbulence becomes strong at the inlet, that is, when Re? at the inlet increases. The results indicated that the flame topology and location in the coherent flame model were more sensitive to turbulence than those in the turbulent flame speed closure model. The flame location behavior on the jet flow combustor significantly changed with the increase of Re?.


Author(s):  
Vladimir Zimont ◽  
Wolfgang Polifke ◽  
Marco Bettelini ◽  
Wolfgang Weisenstein

Theoretical background, details of implementation and validation results of a computational model for turbulent premixed gaseous combustion at high turbulent Reynolds numbers are presented. The model describes the combustion process in terms of a single transport equation for a progress variable; closure of the progress variable’s source term is based on a model for the turbulent flame speed. The latter is identified as a parameter of prime significance in premixed turbulent combustion and is determined from theoretical considerations and scaling arguments, taking into account physico-chemical properties of the combustible mixture and local turbulent parameters. Specifically, phenomena like thickening, wrinkling and straining of the flame front by the turbulent velocity field are considered, yielding a closed form expression for the turbulent flame speed that involves, e.g., speed, thickness and critical gradient of a laminar flame, local turbulent length scale and fluctuation intensity. This closure approach is very efficient and elegant, as it requires only one transport equation more than the non-reacting flow case, and there is no need for costly evaluation of chemical source terms or integration over probability density functions. The model was implemented in a finite-volume based computational fluid dynamics code and validated against detailed experimental data taken from a large scale atmospheric gas turbine burner test stand. The predictions of the model compare well with the available experimental results. It has been observed that the model is significantly more robust and computationally efficient than other combustion models. This attribute makes the model particularly interesting for applications to large 3D problems in complicated geometries.


2010 ◽  
Vol 182 (3) ◽  
pp. 284-308 ◽  
Author(s):  
H. Kolla ◽  
J. W. Rogerson ◽  
N. Swaminathan

2012 ◽  
Vol 13 (5) ◽  
pp. 464-481 ◽  
Author(s):  
Udo Gerke ◽  
Konstantinos Boulouchos

The mixture formation and combustion process of a hydrogen direct-injection internal combustion engine is computed using a modified version of a commercial three-dimensional computational fluid dynamics code. The aim of the work is the evaluation of hydrogen laminar flame speed correlations and turbulent flame speed closures with respect to combustion of premixed and stratified mixtures at various levels of air-to-fuel equivalence ratio. Heat-release rates derived from in-cylinder pressure traces are used for the validation of the combustion simulations. A turbulent combustion model with closures for a turbulent flame speed is investigated. The value of the computed heat-release rates mainly depends on the quality of laminar burning velocities and standard of turbulence quantities provided to the combustion model. Combustion simulations performed with experimentally derived laminar flame speed data give better results than those using laminar flame speeds obtained from a kinetic scheme. However, experimental data of hydrogen laminar flame speeds found in the literature are limited regarding the range of pressures, temperatures and air-to-fuel equivalence ratios, and do not comply with the demand of high-pressure engine-relevant conditions.


2021 ◽  
Author(s):  
Brady M. Wilmer ◽  
William F. Northrop

Abstract In this work, a stochastic reactor model (SRM) is presented that bridges the gap between multi-dimensional computational fluid dynamics (CFD) models and zero-dimensional models for simulating spark-ignited internal combustion engines. The quasi-dimensional approach calculates spatial temperature and composition of stochastic “particles” in the combustion chamber without defining their spatial position, thus allowing for mixture stratification while keeping computational costs low. The SRM simulates flame propagation using a three-zone combustion model consisting of burned gas, flame front, and unburned gas. This “flame brush” approach assumes a hemispherical flame front that propagates through the cylinder based on estimated turbulent flame speed. Cycle-averaged turbulence intensity (u’) is used in the model, calibrated using experimental data. Through the use of a kinetic mechanism, the model predicts key emissions such as CO, CO2, NO, NO2, and HC from both port fuel injection (PFI) and gasoline direct injection (GDI) engines, the latter through the implementation of a simplified spray model. Experimental data from three engines, two GDI and one PFI, were used to validate the model and calibrate cycle-averaged u’. Across all engines, the model was able to produce pressure curves that matched the experimental data. In terms of emissions, the simplified chemical kinetics mechanism matched trends of the experimental data, with the PFI results having higher accuracy. Pressure, burned fraction, and engine-out emissions predictions show that the SRM can reliably match experimental results in certain operating ranges, thus providing a viable alternative to complex CFD and single zone models.


Author(s):  
Siva P. R. Muppala ◽  
Miltiadis V. Papalexandris

In this study, we investigate some preliminary reaction model predictions analytically in comparison with experimental premixed turbulent combustion data from four different flame configurations, which include i) high-jet enveloped, ii) expanding spherical, iii) Bunsen-like, and iv) wide-angled diffuser flames. The special intent of the present work is to evaluate the workability range of the model to hydrogen and hydrogen-doped hydrocarbon mixtures, emphasizing on the significance of preferential diffusion, PD, and Le effects in premixed turbulent flames. This is carried out in two phases: first, involving pure hydrocarbon and pure hydrogen mixtures from two independent measured data, and second, with the blended mixtures from two other data sets. For this purpose, a novel reaction closure embedded with explicit high-pressure and exponential Lewis number terms developed in the context of hydrocarbon mixtures is used. These comparative studies based on the global quantity, turbulent flame speed, indicate that the model predictions are encouraging yielding proper quantification along with reasonable characterization of all the four different flames, over a broad range of turbulence, fuel-types and for varied equivalence ratios. However, with each flame involved the model demands tuning of the (empirical) constant to allow for either or both of these effects, or for the influence of the burner geometry. This provisional stand remains largely insufficient. Therefore, a submodel for chemical time scale from the leading point analysis based on the critically curved laminar flames employed in earlier studies for expanding spherical flames is introduced here. By combining the submodel and the reaction closure, the dependence of turbulent flame speed on physicochemical properties of the burning mixtures including the strong dependence of preferential diffusion and/or Le effects can be determined.


Sign in / Sign up

Export Citation Format

Share Document