Three-dimensional computational fluid dynamics simulation of hydrogen engines using a turbulent flame speed closure combustion model

2012 ◽  
Vol 13 (5) ◽  
pp. 464-481 ◽  
Author(s):  
Udo Gerke ◽  
Konstantinos Boulouchos

The mixture formation and combustion process of a hydrogen direct-injection internal combustion engine is computed using a modified version of a commercial three-dimensional computational fluid dynamics code. The aim of the work is the evaluation of hydrogen laminar flame speed correlations and turbulent flame speed closures with respect to combustion of premixed and stratified mixtures at various levels of air-to-fuel equivalence ratio. Heat-release rates derived from in-cylinder pressure traces are used for the validation of the combustion simulations. A turbulent combustion model with closures for a turbulent flame speed is investigated. The value of the computed heat-release rates mainly depends on the quality of laminar burning velocities and standard of turbulence quantities provided to the combustion model. Combustion simulations performed with experimentally derived laminar flame speed data give better results than those using laminar flame speeds obtained from a kinetic scheme. However, experimental data of hydrogen laminar flame speeds found in the literature are limited regarding the range of pressures, temperatures and air-to-fuel equivalence ratios, and do not comply with the demand of high-pressure engine-relevant conditions.

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Li Yang ◽  
Wubin Weng ◽  
Yanqun Zhu ◽  
Yong He ◽  
Zhihua Wang ◽  
...  

Syngas produced by gasification, which contains a high hydrogen content, has significant potential. The variation in the hydrogen content and dilution combustion are effective means to improve the steady combustion of syngas and reduce NOx emissions. OH planar laser-induced fluorescence technology (OH-PLIF) was applied in the present investigation of the turbulence of a premixed flame of syngas with varied compositions of H2/CO. The flame front structure and turbulent flame velocities of syngas with varied compositions and turbulent intensities were analyzed and calculated. Results showed that the trend in the turbulent flame speed with different hydrogen proportions and dilutions was similar to that of the laminar flame speed of the corresponding syngas. A higher hydrogen proportion induced a higher turbulent flame speed, higher OH concentration, and a smaller flame. Dilution had the opposite effect. Increasing the Reynolds number also increased the turbulent flame speed and OH concentration. In addition, the effect of the turbulence on the combustion of syngas was independent of the composition of syngas after the analysis of the ratio between the turbulent flame speed and the corresponding laminar flame speed, for the turbulent flames under low turbulent intensity. These research results provide a theoretical basis for the practical application of syngas with a complex composition in gas turbine power generation.


Author(s):  
Ratnak Sok ◽  
Jin Kusaka ◽  
Kyohei Yamaguchi

Abstract A quasi-dimensional (QD) simulation model is a preferred method to predict combustion in the gasoline engines with reliable results and shorter calculation time compared with multi-dimensional simulation. The combustion phenomena in spark ignition (SI) engines are highly turbulent, and at initial stage of the combustion process, turbulent flame speed highly depends on laminar burning velocity SL. A major parameter of the QD combustion model is an accurate prediction of the SL, which is unstable under low engine speed and ultra-lean mixture. This work investigates the applicability of the combustion model for evaluating the combustion characteristics of a high-tumble port gasoline engine operated under ultra-lean mixture (equivalence ratio up to ϕ = 0.5) which is out of the range of currently available SL functions initially developed for a single component fuel. In this study, the SL correlation is improved for a gasoline surrogate fuel (5 components). Predicted SL data from the conventional and improved functions are compared with experimental SL data taken from a constant-volume chamber under micro-gravity condition. The SL measurements are done at reference conditions at temperature of 300K, pressure of 0.1MPaa, and at elevated conditions whose temperature = 360K, pressure = 0.1, 0.3, and 0.5 MPaa. Results show that the conventional SL model over-predicts flame speeds under all conditions. Moreover, the model predicts negative SL at very lean (ϕ ≤ 0.3) and rich (ϕ ≥ 1.9) mixture while the revised SL is well validated with the measured data. The improved SL formula is then incorporated into the QD combustion model by a user-defined function in GT-Power simulation. The engine experimental data are taken at 1000 RPM and 2000 RPM under engine load IMEPn = 0.4–0.8 MPa (with 0.1 increment) and ϕ ranges are up to 0.5. The results shows that the simulated engine performances and combustion characteristics are well validated with the experiments within 6% accuracy by using the QD combustion model coupled with the improved SL. A sensitivity analysis of the model is also in good agreement with the experiments under cyclic variation (averaged cycle, high IMEP or stable cycle, and low IMEP or unstable cycle).


Author(s):  
Prabhakar Venkateswaran ◽  
Andrew D. Marshall ◽  
David R. Noble ◽  
Jerry M. Seitzman ◽  
Tim C. Lieuwen

This paper describes measurements and analysis of global turbulent consumption speeds, ST,GC, of hydrogen/carbon monoxide (H2/CO) mixtures. The turbulent flame properties of such mixtures are of fundamental interest because of their strong stretch sensitivity and of practical interest since they are the primary constituents of syngas fuels. Data are analyzed at mean flow velocities and turbulence intensities of 4 < U0 < 50 m/s and 1 < u′rms/SL,0 < 100, respectively, for H2/CO blends ranging from 30–90% H2 by volume. Data from two sets of experiments are reported. In the first, fuel blends ranging from 30–90% H2 and mixture equivalence ratio, Φ, were adjusted at each fuel composition to have nominally the same un-stretched laminar flame speed, SL,0. In the second set, equivalence ratios were varied at constant H2 levels. The data clearly corroborate results from other studies that show significant sensitivity of ST,GC to fuel composition. For example, at a fixed u′rms, ST,GC of a 90% H2 case (at Φ = 0.48) is a factor of three times larger than the baseline Φ = 0.9, CH4/air mixture that has the same SL,0 value. We also describe physics-based correlations of these data, using leading points concepts and detailed kinetic calculations of their stretch sensitivities. These results are used to develop an inequality for negative Markstein length flames that bounds the turbulent flame speed data and show that the data can be collapsed using the maximum stretched laminar flame speed, SL,max, rather than SL,0.


Author(s):  
Jan A. M. Withag ◽  
Jim B. W. Kok ◽  
Khawar Syed

The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions have been made for the laminar flame speed and the critical strain rate to improve the TFC (Turbulent Flame Speed Closure) combustion model. The computational fluid dynamics program CFX is used to perform transient simulations. These results were compared with experimental data of Weigand et al [1]. Two different turbulence models have been used for predictions of the turbulent flow.


2020 ◽  
pp. 146808742091638
Author(s):  
Jann Koch ◽  
Christian Schürch ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

The effects of hydrogen addition to internal combustion engines operated by natural gas/methane has been widely demonstrated experimentally in the literature. Already small hydrogen contents in the fuel show promising benefits with respect to increased engine efficiency, lower CO2 emissions, extended lean operating limits and a higher exhaust gas recirculation tolerance while maintaining the knock resistance of methane. In this article, the influence of hydrogen addition to methane on a spark ignited single cylinder engine is investigated. This article proposes a modelling approach to consider hydrogen addition within three-dimensional reactive computational fluid dynamics in order to establish a framework to gain further insights into the involved processes. Experiments have been performed on a single-cylinder spark-ignition engine situated at a test bed and cater as reference data for validating the proposed reactive computational fluid dynamics modelling approach based around the G-Equation combustion model. Within the course of the first part, crucial aspects relevant to the modelling of the mean engine cycle are highlighted. In this article, a simplified early combustion phase model which considers the transition towards a fully developed turbulent flame following ignition is introduced, along with a second submodel considering combined effects of the walls. The sensitivity of the combustion process towards the modelling approach is presented. The submodels were calibrated for a reference operating point, and a sweep in hydrogen content in the fuel as well as stoichiometric and lean operation has been considered. It is shown that the flame speed coefficient A appearing in the used turbulent flame speed closure, weighting the influence of the turbulent fluctuating speed [Formula: see text], has to be adjusted for different hydrogen contents. The introduced submodels allowed for significant improvement of the in-cylinder pressure and heat release rate evolution throughout all considered operating conditions.


Author(s):  
Holler Tadej ◽  
Ed M. J. Komen ◽  
Kljenak Ivo

The paper presents the computational fluid dynamics (CFD) combustion modeling approach based on two combustion models. This modeling approach was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont's turbulent flame-speed closure (TFC) model and Lipatnikov's flame-speed closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in nuclear power plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However, substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


Author(s):  
Tadej Holler ◽  
Varun Jain ◽  
Ed M. J. Komen ◽  
Ivo Kljenak

The CFD combustion modeling approach based on two combustion models was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont’s Turbulent Flames Speed Closure (TFC) model and Lipatnikov’s Flame Speed Closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in Nuclear Power Plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


Author(s):  
Ehsan Abbasi-Atibeh ◽  
Sandeep Jella ◽  
Jeffrey M. Bergthorson

Sensitivity to stretch and differential diffusion of chemical species are known to influence premixed flame propagation, even in the turbulent environment where mass diffusion can be greatly enhanced. In this context, it is convenient to characterize flames by their Lewis number (Le), a ratio of thermal-to-mass diffusion. The work reported in this paper describes a study of flame stabilization characteristics when the Le is varied. The test data is comprised of Le ≪ 1 (Hydrogen), Le ≈ 1 (Methane), and Le > 1 (Propane) flames stabilized at various turbulence levels. The experiments were carried out in a Hot exhaust Opposed-flow Turbulent Flame Rig (HOTFR), which consists of two axially-opposed, symmetric turbulent round jets. The stagnation plane between the two jets allows the aerodynamic stabilization of a flame, and clearly identifies fuel influences on turbulent flames. Furthermore, high-speed Particle Image Velocimetry (PIV), using oil droplet seeding, allowed simultaneous recordings of velocity (mean and rms) and flame surface position. These experiments, along with data processing tools developed through this study, illustrated that in the mixtures with Le ≪ 1, turbulent flame speed increases considerably compared to the laminar flame speed due to differential diffusion effects, where higher burning rates compensate for the steepening average velocity gradient, and keeps these flames almost stationary as bulk flow velocity increases. These experiments are suitable for validating the ability of turbulent combustion models to predict lifted, aerodynamically-stabilized flames. In the final part of this paper, we model the three fuels at two turbulence intensities using the FGM model in a RANS context. Computations reveal that the qualitative flame stabilization trends reproduce the effects of turbulence intensity, however, more accurate predictions are required to capture the influences of fuel variations and differential diffusion.


Sign in / Sign up

Export Citation Format

Share Document