Trail induced apoptosis and interaction with cytotoxic agents in soft tissue sarcoma cell lines

2001 ◽  
Vol 37 ◽  
pp. S111
Author(s):  
Sandra Tomek ◽  
Wolfgang Koestler ◽  
Thomas Brodowicz ◽  
Ingrid Pribill ◽  
Alexandra Budinsky ◽  
...  
2003 ◽  
Vol 39 (9) ◽  
pp. 1318-1329 ◽  
Author(s):  
S Tomek ◽  
W Koestler ◽  
P Horak ◽  
T Grunt ◽  
T Brodowicz ◽  
...  

1999 ◽  
Vol 52 (4) ◽  
pp. 178-185 ◽  
Author(s):  
Martin W. Elmlinger ◽  
Uta Rauschnabel ◽  
Ewa Koscielniak ◽  
Karin Weber ◽  
Michael B. Ranke

2016 ◽  
Vol 115 (9) ◽  
pp. 1058-1068 ◽  
Author(s):  
Abdulazeez Salawu ◽  
Malee Fernando ◽  
David Hughes ◽  
Malcolm W R Reed ◽  
Penella Woll ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250643
Author(s):  
Toshinori Omori ◽  
Hiroshi Tazawa ◽  
Yasuaki Yamakawa ◽  
Shuhei Osaki ◽  
Joe Hasei ◽  
...  

Soft tissue sarcoma (STS) is a rare cancer that develops from soft tissues in any part of the body. Despite major advances in the treatment of STS, patients are often refractory to conventional radiotherapy, leading to poor prognosis. Enhancement of sensitivity to radiotherapy would therefore improve the clinical outcome of STS patients. We previously revealed that the tumor-specific, replication-competent oncolytic adenovirus OBP-301 kills human sarcoma cells. In this study, we investigated the radiosensitizing effect of OBP-301 in human STS cells. The in vitro antitumor effect of OBP-301 and ionizing radiation in monotherapy or combination therapy was assessed using highly radiosensitive (RD-ES and SK-ES-1) and moderately radiosensitive (HT1080 and NMS-2) STS cell lines. The expression of markers for apoptosis and DNA damage were evaluated in STS cells after treatment. The therapeutic potential of combination therapy was further analyzed using SK-ES-1 and HT1080 cells in subcutaneous xenograft tumor models. The combination of OBP-301 and ionizing radiation showed a synergistic antitumor effect in all human STS cell lines tested, including those that show different radiosensitivity. OBP-301 was found to enhance irradiation-induced apoptosis and DNA damage via suppression of anti-apoptotic myeloid cell leukemia 1 (MCL1), which was expressed at higher levels in moderately radiosensitive cell lines. The combination of OBP-301 and ionizing radiation showed a more profound antitumor effect compared to monotherapy in SK-ES-1 (highly radiosensitive) and HT1080 (moderately radiosensitive) subcutaneous xenograft tumors. OBP-301 is a promising antitumor reagent to improve the therapeutic potential of radiotherapy by increasing radiation-induced apoptosis in STS.


2011 ◽  
Author(s):  
Jung Woo Han ◽  
Bo Ram Kwon ◽  
Chan Hee Park ◽  
Gui Youn Lee ◽  
Hei-Cheul Jeung ◽  
...  

2004 ◽  
Vol 12 (4) ◽  
pp. 397-406 ◽  
Author(s):  
Hooman Ganjavi ◽  
Matthew Gee ◽  
Aru Narendran ◽  
Melvin H Freedman ◽  
David Malkin

Sign in / Sign up

Export Citation Format

Share Document