On the existence of a stable periodic motion of two impacting oscillators

2003 ◽  
Vol 15 (2) ◽  
pp. 371-379 ◽  
Author(s):  
Krzysztof Czolczynski
2006 ◽  
Vol 16 (12) ◽  
pp. 3707-3715 ◽  
Author(s):  
KRZYSZTOF CZOLCZYNSKI ◽  
TOMASZ KAPITANIAK

A system that consists of two impacting oscillators with damping has been considered in this paper. The goal of the studies was to determine the relation between the values of resonant frequencies of the oscillators and the existence of their stable periodic motion. This paper indicates various origins of the periodicity of motion and offers a some advice to the designers of systems with impacts. Especially, the results of the considerations point out some potentially dangerous consequences of the improper value of the resonant frequencies ratio.


2012 ◽  
Vol 472-475 ◽  
pp. 1460-1464
Author(s):  
Ji Yan Wang ◽  
Yu Cheng Zhao ◽  
Chao Wang

The paper established the mechanical model of SFD-sliding bearing flexible rotor system, adopting Runge-Kutta method to solve nonlinear differential equation, thus acquiring the dynamic response and the unbalanced response curve. The study has shown: from stable periodic motion, the route of the flexible rotor system to go into chaos is: periodic motion—quasi-periodic motion—chaos—period doubling bifurcation—chaos. The paper analyzed the sensitivity of the first two critical speeds of flexible rotor system, offering design variables for optimization analysis, improving the efficiency of optimization and shortening the design cycle.


2004 ◽  
Vol 14 (11) ◽  
pp. 3931-3947 ◽  
Author(s):  
KRZYSZTOF CZOLCZYNSKI ◽  
TOMASZ KAPITANIAK

A system that consists of two impacting oscillators with damping has been considered in this paper. In the first part, a method of analytical determination of the existence of periodic solutions to the equations of motion and a method of analysis of the stability of these solutions are presented. The results of the computations carried out by these methods have been illustrated with a few examples. In the second part of the paper, the results of some numerical investigations are presented. The goal of these studies is to determine, in which regions of parameters characterizing the system, the periodic motion with one impact per period exists and is stable.


2013 ◽  
Vol 706-708 ◽  
pp. 1310-1313
Author(s):  
Ji Yan Wang

This paper establishes a linking dynamic model of SFD-sliding bearing rigid rotor system by employing Runge-Kutta method to solve dynamic question of the above systems. The study has shown: rigid rotor system can keep stable periodic motion in a certain scope with the following quasi-periodicity bifurcation.


Author(s):  
Ryo Mizushima ◽  
Takahiro Hatano

Summary The dynamics of sliding friction is mainly governed by the frictional force. Previous studies have shown that the laboratory-scale friction is well described by an empirical law stated in terms of the slip velocity and the state variable. The state variable represents the detailed physicochemical state of the sliding interface. Despite some theoretical attempts to derive this friction law, there has been no unique equation for time evolution of the state variable. Major equations known to date have their own merits and drawbacks. To shed light on this problem from a new aspect, here we investigate the feasibility of periodic motion without the help of radiation damping. Assuming a patch on which the slip velocity is perturbed from the rest of the sliding interface, we prove analytically that three major evolution laws fail to reproduce stable periodic motion without radiation damping. Furthermore, we propose two new evolution equations that can produce stable periodic motion without radiation damping. These two equations are scrutinized from the viewpoint of experimental validity and the relevance to slow earthquakes.


Author(s):  
Tama´s Insperger ◽  
Janez Gradisek ◽  
Martin Kalveram ◽  
Ga´bor Ste´pa´n ◽  
Klaus Weinert ◽  
...  

Two degree of freedom model of milling process is investigated. The governing equation of motion is decomposed into two parts: an ordinary differential equation describing the stable periodic motion of the tool and a delay-differential equation describing chatter. Stability chart is derived by using semi-discretization method for the delay-differential equation corresponding to the chatter motion. The stable periodic motion of the tool and the associated surface location error are obtained by a conventional solution technique of ordinary differential equations. Stability chart and surface location error are determined for milling process. It is shown that at spindle speeds, where high depths of cut are available through stable machining, the surface location error is large. The phase portrait of the tool is also analyzed for different spindle speeds. Theoretical predictions are qualitatively confirmed by experiments.


2019 ◽  
Vol 97 (3) ◽  
pp. 1945-1958
Author(s):  
Ambrus Zelei ◽  
Bernd Krauskopf ◽  
Petri T Piiroinen ◽  
Tamás Insperger

1983 ◽  
Vol 86 (4) ◽  
pp. 587-593 ◽  
Author(s):  
N. Popplewell ◽  
Y. Muzyka ◽  
C.N. Bapat ◽  
K. McLachlan

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhang Li ◽  
Yuegang Tan

The spine plays important roles in the quadruped locomotion. To investigate the effects of the spine on the quadruped trotting motion, firstly, a sagittal passive model is proposed which contains four massless springy legs and two passive spinal joints. To generate the trotting gait of the model, the multibody hybrid dynamics model is established based on the defined events. The combination of optimization tools is used to find the suitable solution space in which the model can maintain a periodic motion. It reveals that the quadruped trotting motion results from the coordinated features of the spine and the legs. By comparing the model with the rigid body, it is proven that the spinal joints can reduce the effect of the ground reaction forces on the body in a special velocity range. Then, a hybrid controller whose objective is to maintain the kinematic coordination between the spinal joints is applied and it replaces the passive spinal joints, and the results prove that it can make the model achieve a stable periodic motion. Finally, the prototype of the quadruped robot with two spinal joints based on the model is established and its trotting motion is achieved successfully. The experiment results also indicate the compliant effect of the spine on the motion performance. Consequently, the effects of the spine at trotting gait are helpful to guide the development of the quadruped robots.


Sign in / Sign up

Export Citation Format

Share Document