scholarly journals Asymmetric cell division: Plane but not simple

2001 ◽  
Vol 11 (6) ◽  
pp. R233-R236 ◽  
Author(s):  
Paul N. Adler ◽  
Job Taylor
2001 ◽  
Vol 114 (23) ◽  
pp. 4319-4328
Author(s):  
Sherryl R. Bisgrove ◽  
Darryl L. Kropf

The first cell division in zygotes of the fucoid brown alga Pelvetia compressa is asymmetric and we are interested in the mechanism controlling the alignment of this division. Since the division plane bisects the mitotic apparatus, we investigated the timing and mechanism of spindle alignments. Centrosomes, which give rise to spindle poles, aligned with the growth axis in two phases – a premetaphase rotation of the nucleus and centrosomes followed by a postmetaphase alignment that coincided with the separation of the mitotic spindle poles during anaphase and telophase. The roles of the cytoskeleton and cell cortex in the two phases of alignment were analyzed by treatment with pharmacological agents. Treatments that disrupted cytoskeleton or perturbed cortical adhesions inhibited pre-metaphase alignment and we propose that this rotational alignment is effected by microtubules anchored at cortical adhesion sites. Postmetaphase alignment was not affected by any of the treatments tested, and may be dependent on asymmetric cell morphology.


2013 ◽  
Vol 75 (2) ◽  
pp. 258-269 ◽  
Author(s):  
Carolyn G. Rasmussen ◽  
Amanda J. Wright ◽  
Sabine Müller

2008 ◽  
Vol 105 (47) ◽  
pp. 18637-18642 ◽  
Author(s):  
X. M. Xu ◽  
Q. Zhao ◽  
T. Rodrigo-Peiris ◽  
J. Brkljacic ◽  
C. S. He ◽  
...  

2014 ◽  
Author(s):  
Sandra Richter ◽  
Marika Kientz ◽  
Sabine Brumm ◽  
Mads Eggert Nielsen ◽  
Misoon Park ◽  
...  

Cell Biology ◽  
2014 ◽  
pp. 1-26 ◽  
Author(s):  
David Bouchez ◽  
Daniël Van Damme ◽  
Joanna Boruc ◽  
Estelle Schaefer ◽  
Martine Pastuglia

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Sandra Richter ◽  
Marika Kientz ◽  
Sabine Brumm ◽  
Mads Eggert Nielsen ◽  
Misoon Park ◽  
...  

Membrane trafficking is essential to fundamental processes in eukaryotic life, including cell growth and division. In plant cytokinesis, post-Golgi trafficking mediates a massive flow of vesicles that form the partitioning membrane but its regulation remains poorly understood. Here, we identify functionally redundant Arabidopsis ARF guanine-nucleotide exchange factors (ARF-GEFs) BIG1–BIG4 as regulators of post-Golgi trafficking, mediating late secretion from the trans-Golgi network but not recycling of endocytosed proteins to the plasma membrane, although the TGN also functions as an early endosome in plants. In contrast, BIG1-4 are absolutely required for trafficking of both endocytosed and newly synthesized proteins to the cell–division plane during cytokinesis, counteracting recycling to the plasma membrane. This change from recycling to secretory trafficking pathway mediated by ARF-GEFs confers specificity of cargo delivery to the division plane and might thus ensure that the partitioning membrane is completed on time in the absence of a cytokinesis-interphase checkpoint.


Sign in / Sign up

Export Citation Format

Share Document