scholarly journals The lipid transfer activity of phosphatidylinositol transfer protein is sufficient to account for enhanced phospholipase C activity in turkey erythrocyte ghosts

1997 ◽  
Vol 7 (3) ◽  
pp. 184-190 ◽  
Author(s):  
Richard A Currie ◽  
Bryan M.G MacLeod ◽  
C.Peter Downes
1997 ◽  
Vol 324 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Simon PROSSER ◽  
Robert SARRA ◽  
Philip SWIGART ◽  
Andrew BALL ◽  
Shamshad COCKCROFT

Phosphatidylinositol transfer protein α (PITPα) is a 32 kDa protein of 270 amino acids that is essential for phospholipase C-mediated phosphatidylinositol bisphosphate hydrolysis. In addition, it binds and transfers phosphatidylinositol and phosphatidylcholine between membrane compartments in vitro. Here we have used limited proteolysis of PITPα by subtilisin to identify the structural requirements for function. Digestion by subtilisin results in the generation of a number of slightly smaller peptide fragments, the major fragment being identified as a 29 kDa protein. The fragments were resolved by size-exclusion chromatography and were found to be totally inactive in both in vivo PLC reconstitution assays and in vitro phosphatidylinositol transfer assays. N-terminal sequencing and MS of the major 29 kDa fragment shows that cleavage occurs at the C-terminus of PITP at Met246, leading to a deletion of 24 amino acid residues. We conclude that the C-terminus plays an important role in mediating PLC signalling in vivo and lipid transfer in vitro, supporting the notion that lipid transfer may be a facet of PITP function in vivo.


Cell ◽  
1993 ◽  
Vol 74 (5) ◽  
pp. 919-928 ◽  
Author(s):  
Geraint M.H. Thomas ◽  
Emer Cunningham ◽  
Amanda Fensome ◽  
Andrew Ball ◽  
Nicholas F. Totty ◽  
...  

2020 ◽  
Vol 219 (5) ◽  
Author(s):  
Yaxi Wang ◽  
Peihua Yuan ◽  
Aby Grabon ◽  
Ashutosh Tripathi ◽  
Dongju Lee ◽  
...  

The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum–plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.


Sign in / Sign up

Export Citation Format

Share Document