Radiation-induced kidney injury: a role for chronic oxidative stress?

Micron ◽  
2002 ◽  
Vol 33 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Mike E.C Robbins ◽  
Weiling Zhao ◽  
Charles S Davis ◽  
Shinya Toyokuni ◽  
Stephen M Bonsib
2021 ◽  
Vol 14 ◽  
Author(s):  
Adeleh Sahebnasagh ◽  
Fatemeh Saghafi ◽  
Saeed Azimi ◽  
Ebrahim Salehifar ◽  
Seyed Jalal Hosseinimehr

: More than half of cancer patients need radiotherapy during the course of their treatment. Despite the beneficial aspects, the destructive effects of radiation beams on normal tissues lead to oxidative stress, inflammation, and cell injury. Kidneys are affected during radiotherapy of abdominal malignancies. Radiation nephropathy eventually leads to the release of factors triggering systemic inflammation. Currently, there is no proven prophylactic or therapeutic intervention for the management of radiation-induced nephropathy. This article reviews the biomarkers involved in the pathophysiology of radiation-induced nephropathy and its underlying molecular mechanisms. The efficacy of compounds with potential radio-protective properties on amelioration of inflammation and oxidative stress is also discussed. By outlining the approaches for preventing and treating this critical side effect, we evaluate the potential treatment of radiation-induced nephropathy. Available preclinical and clinical studies on these compounds are also scrutinized.


2008 ◽  
Vol 413 (1) ◽  
pp. 185-191 ◽  
Author(s):  
Disha Dayal ◽  
Sean M. Martin ◽  
Charles L. Limoli ◽  
Douglas R. Spitz

Chronic oxidative stress has been associated with genomic instability following exposure to ionizing radiation. However, results showing direct causal linkages between specific ROS (reactive oxygen species) and the ionizing radiation-induced mutator phenotype are lacking. The present study demonstrates that ionizing radiation-induced genomically unstable cells (characterized by chromosomal instability and an increase in mutation and gene amplification frequencies) show a 3-fold increase in steady-state levels of hydrogen peroxide, but not superoxide. Furthermore, stable clones isolated from parallel studies showed significant increases in catalase and GPx (glutathione peroxidase) activity. Treatment of unstable cells with PEG-CAT (polyethylene glycol-conjugated catalase) reduced the mutation frequency and mutation rate in a dose-dependent fashion. In addition, inhibiting catalase activity in the stable clones using AT (3-aminotriazole) increased mutation frequency and rate. These results clearly demonstrate the causal relationship between chronic oxidative stress mediated by hydrogen peroxide and the mutator phenotype that persists for many generations following exposure of mammalian cells to ionizing radiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Jinhua Tang ◽  
Haidong Yan ◽  
Shougang Zhuang

Obesity-related glomerulopathy is an increasing cause of end-stage renal disease. Obesity has been considered a state of chronic low-grade systemic inflammation and chronic oxidative stress. Augmented inflammation in adipose and kidney tissues promotes the progression of kidney damage in obesity. Adipose tissue, which is accumulated in obesity, is a key endocrine organ that produces multiple biologically active molecules, including leptin, adiponectin, resistin, that affect inflammation, and subsequent deregulation of cell function in renal glomeruli that leads to pathological changes. Oxidative stress is also associated with obesity-related renal diseases and may trigger the initiation or progression of renal damage in obesity. In this paper, we focus on inflammation and oxidative stress in the progression of obesity-related glomerulopathy and possible interventions to prevent kidney injury in obesity.


2012 ◽  
Vol 33 (7) ◽  
pp. 1399-1405 ◽  
Author(s):  
Nabila-Sandra Hadj-Hamou ◽  
Marick Laé ◽  
Anna Almeida ◽  
Pierre de la Grange ◽  
Youlia Kirova ◽  
...  

2012 ◽  
Vol 103 ◽  
pp. S604-S605
Author(s):  
R. Cosar ◽  
S. Eskiocak ◽  
V. Yurut-Caloglu ◽  
A. Ozen ◽  
C. Uzal ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Richard Klaus ◽  
Maximilian Niyazi ◽  
Bärbel Lange-Sperandio

AbstractRadiation nephropathy (RN) is a kidney injury induced by ionizing radiation. In a clinical setting, ionizing radiation is used in radiotherapy (RT). The use and the intensity of radiation therapy is limited by normal-tissue damage including kidney toxicity. Different thresholds for kidney toxicity exist for different entities of RT. Histopathologic features of RN include vascular, glomerular and tubulointerstitial damage. The different molecular and cellular pathomechanisms involved in RN are not fully understood. Ionizing radiation causes double-stranded breaks in the DNA, followed by cell death including apoptosis and necrosis of renal endothelial, tubular and glomerular cells. Especially in the latent phase of RN oxidative stress and inflammation have been proposed as putative pathomechanisms, but so far no clear evidence was found. Cellular senescence, activation of the renin–angiotensin–aldosterone-system and vascular dysfunction might contribute to RN, but only limited data is available. Several signalling pathways have been identified in animal models of RN and different approaches to mitigate RN have been investigated. Drugs that attenuate cell death and inflammation or reduce oxidative stress and renal fibrosis were tested. Renin–angiotensin–aldosterone-system blockade, anti-apoptotic drugs, statins, and antioxidants have been shown to reduce the severity of RN. These results provide a rationale for the development of new strategies to prevent or reduce radiation-induced kidney toxicity.


Sign in / Sign up

Export Citation Format

Share Document