Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor

2014 ◽  
Vol 26 (5) ◽  
pp. 1014-1022 ◽  
Author(s):  
Baolin Hou ◽  
Hongjun Han ◽  
Shengyong Jia ◽  
Haifeng Zhuang ◽  
Qian Zhao ◽  
...  
2017 ◽  
Vol 120 ◽  
pp. 152-160 ◽  
Author(s):  
Joao P. Bassin ◽  
Caio T.C.C. Rachid ◽  
Caren Vilela ◽  
Sandra M.S. Cao ◽  
Raquel S. Peixoto ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2484
Author(s):  
César Huiliñir ◽  
Vivian Fuentes ◽  
Carolina Estuardo ◽  
Christian Antileo ◽  
Ernesto Pino-Cortés

This work aimed to achieve partial nitrification (PN) in a Sequencing Moving Bed Biofilm Reactor SMBBR with zeolite as a biomass carrier by using sulfide pulses in the presence of organic matter as an inhibitor. Two conditions were evaluated: sulfide (HS−) = 5 mg S/L and vvm (air volume per liquid volume per minute, L of air L−1 of liquid min−1) = 0.1 (condition 1); and a HS− = 10 mg S/L and a vvm = 0.5 (condition 2). The simultaneous effect of organic matter and sulfide was evaluated at a Chemical Oxygen Demand (COD) = 350 mg/L and HS− = 5 mg S/L, with a vvm = 0.5. As a result, using the sulfide pulse improved the nitrite accumulation in both systems. However, Total Ammonia Nitrogen (TAN) oxidation in both processes decreased by up to 60%. The simultaneous presence of COD and sulfide significantly reduced the TAN and nitrite oxidation, with a COD removal yield of 80% and sulfide oxidation close to 20%. Thus, the use of a sulfide pulse enabled PN in a SMBBR with zeolite. Organic matter, together with the sulfide pulse, almost completely inhibited the nitrification process despite using zeolite.


Chemosphere ◽  
2021 ◽  
Vol 275 ◽  
pp. 129937
Author(s):  
Alessandro di Biase ◽  
Maciej S. Kowalski ◽  
Tanner R. Devlin ◽  
Jan A. Oleszkiewicz

2020 ◽  
Vol 6 ◽  
pp. 340-344
Author(s):  
Andreia D. Santos ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira ◽  
Luis M. Castro

Sign in / Sign up

Export Citation Format

Share Document