Turbulent structure and bursting process in multi-bend meander channel

2014 ◽  
Vol 26 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Xiao-xie Liu ◽  
Yu-chuan Bai
2020 ◽  
Vol 1709 ◽  
pp. 012018
Author(s):  
E L Loboda ◽  
M V Agafontsev ◽  
A S Klimentiev ◽  
D P Kasymov ◽  
Y A Loboda ◽  
...  

2011 ◽  
Vol 291-294 ◽  
pp. 1685-1688
Author(s):  
Xi Nan Dang ◽  
Qiao Fu Chen ◽  
Li Jun Yang

According to the vacuum bursting process for fresh chestnut shell and requirements for relevant vacuum system, a vacuum system of steam jet pump was designed with a start-up jet pump attached to it. Of which the waste gas from ejector was used for reheating in the bursting process to lead the vacuum bursting unit to run more reliably and stably with efficiency improved and energy consumption reduced. The rate of bursting came up to 95% in the process test.


2003 ◽  
Vol 33 (8) ◽  
pp. 671-676 ◽  
Author(s):  
M G Galushkin ◽  
V S Golubev ◽  
Yu N Zavalov ◽  
Andrei A Ionin ◽  
A A Kotkov ◽  
...  

2005 ◽  
pp. 37-46 ◽  
Author(s):  
Iehisa NEZU ◽  
Michio SANJOU ◽  
Hiroki WAKAMOTO ◽  
Tomonori DOI

2012 ◽  
Vol 212-213 ◽  
pp. 1177-1181
Author(s):  
Yan Hua Yang ◽  
Xiao Qiang Liu ◽  
Ming Jin Zhang

In this paper, we adopt theoretical method to study the evolution characteristic of the two dimensional turbulent vortex structures in a meander channel. The disturbance growth rates under different bank curvatures are simulated. The result showed that the change of growth rate of smaller vortices is more intensive than bigger vortices. Future more, we consider the coherent vortex structure as a kind of disturbance to study the evolution characteristics of multi-scale turbulent structures in a meander channel, make basis for finding “meander channel-forming vortices” which is controlling the river shape and adapt to the meander river in theoretic.


2015 ◽  
Vol 780 ◽  
pp. 60-98 ◽  
Author(s):  
J. M. Lawson ◽  
J. R. Dawson

The statistics of the velocity gradient tensor $\unicode[STIX]{x1D63C}=\boldsymbol{{\rm\nabla}}\boldsymbol{u}$, which embody the fine scales of turbulence, are influenced by turbulent ‘structure’. Whilst velocity gradient statistics and dynamics have been well characterised, the connection between structure and dynamics has largely focused on rotation-dominated flow and relied upon data from numerical simulation alone. Using numerical and spatially resolved experimental datasets of homogeneous turbulence, the role of structure is examined for all local (incompressible) flow topologies characterisable by $\unicode[STIX]{x1D63C}$. Structures are studied through the footprints they leave in conditional averages of the $Q=-\text{Tr}(\unicode[STIX]{x1D63C}^{2})/2$ field, pertinent to non-local strain production, obtained using two complementary conditional averaging techniques. The first, stochastic estimation, approximates the $Q$ field conditioned upon $\unicode[STIX]{x1D63C}$ and educes quantitatively similar structure in both datasets, dissimilar to that of random Gaussian velocity fields. Moreover, it strongly resembles a promising model for velocity gradient dynamics recently proposed by Wilczek & Meneveau (J. Fluid Mech., vol. 756, 2014, pp. 191–225), but is derived under a less restrictive premise, with explicitly determined closure coefficients. The second technique examines true conditional averages of the $Q$ field, which is used to validate the stochastic estimation and provide insights towards the model’s refinement. Jointly, these approaches confirm that vortex tubes are the predominant feature of rotation-dominated regions and additionally show that shear layer structures are active in strain-dominated regions. In both cases, kinematic features of these structures explain alignment statistics of the pressure Hessian eigenvectors and why local and non-local strain production act in opposition to each other.


Sign in / Sign up

Export Citation Format

Share Document