Nitrification inhibitor nitrapyrin does not affect yield-scaled nitrous oxide emissions in a tropical grassland

Pedosphere ◽  
2021 ◽  
Vol 31 (2) ◽  
pp. 265-278 ◽  
Author(s):  
Ana Gabriela PÉREZ-CASTILLO ◽  
Cristina CHINCHILLA-SOTO ◽  
Jorge Alberto ELIZONDO-SALAZAR ◽  
Ronny BARBOZA ◽  
Dong-Gill KIM ◽  
...  
Soil Research ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 547 ◽  
Author(s):  
Terry J. Rose ◽  
Stephen G. Morris ◽  
Peter Quin ◽  
Lee J. Kearney ◽  
Stephen Kimber ◽  
...  

Although there is growing evidence that the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can lower soil nitrous oxide (N2O) emissions in temperate environments, there is little evidence of its efficacy in subtropical or tropical environments where temperatures and rainfall intensities are typically higher. We investigated N2O emissions in field-grown aerobic rice in adjacent fields in the 2013–14 and 2014–15 seasons in a subtropical environment. Crops were topdressed with 80 kg nitrogen (N) ha–1 before rainfall, as either urea, urea + DMPP (at 1.6 kg DMPP t–1 urea: ‘urea-DMPP’) or a blend of 50% urea and 50% urea-DMPP in the 2013–14 season, and urea, urea-DMPP or polymer (3 month)-coated urea (PCU) in the 2014–15 season. DMPP-urea significantly (P < 0.05) lowered soil N2O emissions in the 2013–14 season during the peak flux period after N fertiliser application, but had no effect in 2014–15. The mean cumulative N2O emissions over the entire growing period were 190 g N2O-N ha–1 in 2013–14 and 413 g N2O-N ha–1 in 2014–15, with no significant effect of DMPP or PCU. Our results demonstrate that DMPP can lower N2O emissions in subtropical, aerobic rice during peak flux events following N fertiliser application in some seasons, but inherent variability in climate and soil N2O emissions limited the ability to detect significant differences in cumulative N2O flux over the seasonal assessment. A greater understanding of how environmental and soil factors impact the efficacy of DMPP in the subtropics is needed to formulate appropriate guidelines for its use commercially.


2010 ◽  
Vol 10 (7) ◽  
pp. 1229-1235 ◽  
Author(s):  
Weihong Qiu ◽  
Hong Jie Di ◽  
Keith C. Cameron ◽  
Chengxiao Hu

2014 ◽  
Vol 152 (S1) ◽  
pp. 159-171 ◽  
Author(s):  
D. R. SELBIE ◽  
K. C. CAMERON ◽  
H. J. DI ◽  
J. L. MOIR ◽  
G. J. LANIGAN ◽  
...  

SUMMARYNitrous oxide (N2O) emissions associated with urine nitrogen (N) deposition during grazing are a major component of greenhouse gas emissions from domestic livestock. The present study investigated the relationship between urine N loading rate and the efficacy of a nitrification inhibitor, dicyandiamide (DCD), on cumulative N2O emissions from a grassland soil in Ireland over 80 and 360-day periods in 2009/10 and 2010/11. A diminishing curvilinear relationship between urine N rate and cumulative N2O emissions was observed in both years. Despite this increase in cumulative N2O emissions, the emission factor (EF3) for N2O decreased with increasing urine N rate from, on average, 0·24 to 0·10% (urine applied at 300 and 1000 kg N/ha, respectively), during an 80-day measurement period. This was probably the result of a factor other than N, such as carbon (C), limiting the production of N2O. The efficacy of DCD varied with urine N loading rate, and inter-annual variability in efficacy was also observed. Dicyandiamide was effective at reducing N2O production for 50–80 days after urine application, which accounted for the major period of elevated daily flux. However, DCD was ineffective at reducing N2O production after this period, which was likely a result of its removal from the soil via degradation and leaching.


Sign in / Sign up

Export Citation Format

Share Document