A new fuzzy clustering-based segmentation of heterogeneous 18F-FET PET tumors for definition of gross target volume in high-grade glioma

NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S122
Author(s):  
S Belhassen ◽  
CS Llina Fuentes ◽  
H Zaidi
2019 ◽  
Vol 12 (3) ◽  
pp. 220-228 ◽  
Author(s):  
Laura Evangelista ◽  
Lea Cuppari ◽  
Luisa Bellu ◽  
Daniele Bertin ◽  
Mario Caccese ◽  
...  

Purpose: The aims of the present study were to: 1- critically assess the utility of L-3,4- dihydroxy-6-18Ffluoro-phenyl-alanine (18F-DOPA) and O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) Positron Emission Tomography (PET)/Computed Tomography (CT) in patients with high grade glioma (HGG) and 2- describe the results of 18F-DOPA and 18F-FET PET/CT in a case series of patients with recurrent HGG. Methods: We searched for studies using the following databases: PubMed, Web of Science and Scopus. The search terms were: glioma OR brain neoplasm and DOPA OR DOPA PET OR DOPA PET/CT and FET OR FET PET OR FET PET/CT. From a mono-institutional database, we retrospectively analyzed the 18F-DOPA and 18F-FET PET/CT of 29 patients (age: 56 ± 12 years) with suspicious for recurrent HGG. All patients underwent 18F-DOPA or 18F-FET PET/CT for a multidisciplinary decision. The final definition of recurrence was made by magnetic resonance imaging (MRI) and/or multidisciplinary decision, mainly based on the clinical data. Results: Fifty-one articles were found, of which 49 were discarded, therefore 2 studies were finally selected. In both the studies, 18F-DOPA and 18F-FET as exchangeable in clinical practice particularly for HGG patients. From our institutional experience, in 29 patients, we found that sensitivity, specificity and accuracy of 18F-DOPA PET/CT in HGG were 100% (95% confidence interval- 95%CI - 81-100%), 63% (95%CI: 39-82%) and 62% (95%CI: 39-81%), respectively. 18F-FET PET/CT was true positive in 4 and true negative in 4 patients. Sensitivity, specificity and accuracy for 18F-FET PET/CT in HGG were 100%. Conclusion: 18F-DOPA and 18F-FET PET/CT have a similar diagnostic accuracy in patients with recurrent HGG. However, 18F-DOPA PET/CT could be affected by inflammation conditions (false positive) that can alter the final results. Large comparative trials are warranted in order to better understand the utility of 18F-DOPA or 18F-FET PET/CT in patients with HGG.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shulun Nie ◽  
Yufang Zhu ◽  
Jia Yang ◽  
Tao Xin ◽  
Song Xue ◽  
...  

Abstract Introduction In this study, we performed a consecutive macropathologic analysis to assess microscopic extension (ME) in high-grade glioma (HGG) to determine appropriate clinical target volume (CTV) margins for radiotherapy. Materials and methods The study included HGG patients with tumors located in non-functional areas, and supratotal resection was performed. The ME distance from the edge of the tumor to the microscopic tumor cells surrounding brain tissue was measured. Associations between the extent of ME and clinicopathological characteristics were evaluated by multivariate linear regression (MVLR) analysis. An ME predictive model was developed based on the MVLR model. Results Between June 2017 and July 2019, 652 pathologic slides obtained from 30 HGG patients were analyzed. The mean ME distance was 1.70 cm (range, 0.63 to 2.87 cm). The MVLR analysis identified that pathologic grade, subventricular zone (SVZ) contact and O6-methylguanine-DNA methyltransferase (MGMT) methylation, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status were independent variables predicting ME (all P < 0.05). A multivariable prediction model was developed as follows: YME = 0.672 + 0.513XGrade + 0.380XSVZ + 0.439XMGMT + 0.320XIDH + 0.333X1p/19q. The R-square value of goodness of fit was 0.780. The receiver operating characteristic curve proved that the area under the curve was 0.964 (P < 0.001). Conclusion ME was heterogeneously distributed across different grades of gliomas according to the tumor location and molecular marker status, which indicated that CTV delineation should be individualized. The model could predict the ME of HGG, which may help clinicians determine the CTV for individual patients. Trial registration The trial was registered with Chinese Clinical Trial Registry (ChiCTR2100046106). Registered 4 May 2021-Retrospectively registered.


2014 ◽  
Vol 112 (3) ◽  
pp. 425-429 ◽  
Author(s):  
Pierina Navarria ◽  
Giacomo Reggiori ◽  
Federico Pessina ◽  
Anna Maria Ascolese ◽  
Stefano Tomatis ◽  
...  

2013 ◽  
Vol 106 ◽  
pp. S252
Author(s):  
S. Moller ◽  
P. Munck af Rosenschold ◽  
I. Law ◽  
J.C. Costa ◽  
L. Ohlhues ◽  
...  

2014 ◽  
Vol 16 (suppl 5) ◽  
pp. v189-v189
Author(s):  
S. Engelholm ◽  
J. Costa ◽  
M. Lundemann ◽  
I. Law ◽  
P. M. a. Rosenschold ◽  
...  

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii81-iii81
Author(s):  
A F Keßler ◽  
J Weiland ◽  
T Linsenmann ◽  
R Ernestus ◽  
C Hagemann ◽  
...  

Abstract BACKGROUND The addition of Tumor Treating Fields (TTFields) to the first-line therapy in glioblastoma (GBM) demonstrated significantly improved progression free survival, overall survival and longterm survival rates in the EF-14 phase 3 trial. However, responder analysis of patients with recurrent GBM (rGBM) treated with TTFields monotherapy (in the EF-11 trial) revealed delayed response monitored by MRI analysis. More recent data suggests that O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET may add valuable information for monitoring therapy response of glioblastoma patients treated with TTFields. Here, we report on FET PET response in a patient with progressive anaplastic astrocytoma WHO grade III (AA) treated with TTFields in combination with temozolomide (TMZ) chemotherapy. METHODS We present a 38-year old patient with an initial diagnosis of a diffuse astrocytoma WHO grade II in 2011, and malignisation to an AA on progression. The treatment regimen included initially radio-chemotherapy (RCT) with TMZ. On further progression of the AA in 2017, TTFields were added to another 6 cycles of TMZ. Several FET PET scans for differentiation of tumor progression from treatment-related changes were performed over time. The definitive diagnosis (tumor progression and grading) was confirmed by histopathology after stereotactic biopsy (SB). RESULTS In 2012, the patient was first diagnosed with a low grade astrocytoma WHO grade II of the right frontal, temporal and parietal lobe including infiltration of thalamus and corpus was confirmed by SB, followed by irradiation. On progression in 2015, a FET PET Scan showed FET avidity in all tumor affected regions of the brain. SB confirmed an AA, while FET PET scans showed only a mild response in the temporoparietal region after 6 cycles of TMZ. In 2017, the next progression without further malignisation was confirmed by SB and treated RCT with 41.4 Gy and TMZ chemotherapy, followed by application of TTFields with an average usage rate of 85.7 % over 6 months. Thus, the TTFields adherence was well above the independent prognostic threshold of 75 %. No additional adverse events due to the combined therapy of TTFields and TMZ were observed. Due to a new contrast enhancing lesion in the right frontal lobe (10x7mm), another FET PET scan was performed 1.5 years later. In this scan, obtained after combined TTFields and RCT therapy a strong response regarding FET avidity was observed. CONCLUSION In summary, FET PET is able to add important additional information for evaluation of treatment response in high grade glioma patients, in particular for TTFields treated patients, while adding TTFields to radiochemotherapy might even enhance treatment response of high grade glioma. Further studies might elucidate the role of FET PET imaging for therapy monitoring in high grade glioma patients treated with TTFields.


2014 ◽  
Vol 56 (1) ◽  
pp. 9-15 ◽  
Author(s):  
N. L. Jansen ◽  
B. Suchorska ◽  
V. Wenter ◽  
C. Schmid-Tannwald ◽  
A. Todica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document