Summary receiver operating characteristic curves as a technique for meta-analysis of the diagnostic performance of duplex ultrasonography in peripheral arterial disease

1996 ◽  
Vol 3 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Sybolt O. de Vries ◽  
Maria G.M. Hunink ◽  
Joseph F. Polak
Radiology ◽  
2000 ◽  
Vol 217 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Patricia J. Nelemans ◽  
Tim Leiner ◽  
Henrica C. W. de Vet ◽  
Joseph M. A. van Engelshoven

Vascular ◽  
2020 ◽  
pp. 170853812093893
Author(s):  
Kazuhiro Tsunekawa ◽  
Fumio Nagai ◽  
Tamon Kato ◽  
Ikkei Takashimizu ◽  
Daisuke Yanagisawa ◽  
...  

Objectives Laser speckle flowgraphy is a technology using reflected scattered light for visualization of blood distribution, which can be used to measure relative velocity of blood flow easily without contact with the skin within a short time. It was hypothesized that laser speckle flowgraphy may be able to identify foot ischemia. This study was performed to determine whether laser speckle flowgraphy could distinguish between subjects with and without peripheral arterial disease. Materials and methods All subjects were classified based on clinical observations using the Rutherford classification: non-peripheral arterial disease, class 0; peripheral arterial disease group, class 2–5. Rutherford class 6 was one of the exclusion criteria. Laser speckle flowgraphy measured the beat strength of skin perfusion as an indicator of average dynamic cutaneous blood flow change synchronized with the heartbeat. The beat strength of skin perfusion indicates the strength of the heartbeat on the skin, and the heartbeat strength calculator in laser speckle flowgraphy uses the blood flow data to perform a Fourier transform to convert the temporal changes in blood flow to a power spectrum. A total of 33 subjects with peripheral arterial disease and 40 subjects without peripheral arterial disease at a single center were prospectively examined. Laser speckle flowgraphy was used to measure hallucal and thenar cutaneous blood flow, and the measurements were repeated three times. The hallucal and thenar index was defined as the ratio of beat strength of skin perfusion value on hallux/beat strength of skin perfusion value on ipsilateral thenar eminence. The Mann–Whitney U-test was used to compare the median values of hallucal and thenar index and ankle brachial index between the two groups. A receiver operating characteristic curve for hallucal and thenar index of beat strength of skin perfusion was plotted, and a cutoff point was set. The correlation between hallucal and thenar index of beat strength of skin perfusion and ankle brachial index was explored in all subjects, the hemodialysis group, and the non-hemodialysis (non-hemodialysis) group. Results The median value of the hallucal and thenar index of beat strength of skin perfusion was significantly different between subjects with and without peripheral arterial disease (0.27 vs. 0.87, respectively; P <  0.001). The median value of ankle brachial index was significantly different between subjects with and without peripheral arterial disease (0.8 vs. 1.1, respectively; P <  0.001). Based on the receiver operating characteristic of hallucal and thenar index, the cutoff was 0.4416 and the sensitivity, specificity, positive predictive value, and negative predictive value were 68.7%, 95%, 91.7%, and 77.6%, respectively. The correlation coefficients of all subjects, the hemodialysis group, and the non-hemodialysis group were 0.486, 0.102, and 0.743, respectively. Conclusions Laser speckle flowgraphy is a noninvasive, rapid, and widely applicable method. Laser speckle flowgraphy using hallucal and thenar index would be helpful to determine the differences between subjects with and without peripheral arterial disease. The correlation between hallucal and thenar index of beat strength of skin perfusion and ankle brachial index indicated that this index was especially useful in the non-hemodialysis group.


Sign in / Sign up

Export Citation Format

Share Document