scholarly journals The Engagement of Sec61p in the ER Dislocation Process

1999 ◽  
Vol 4 (6) ◽  
pp. 925-934 ◽  
Author(s):  
Mingyue Zhou ◽  
Randy Schekman
Keyword(s):  
1980 ◽  
Vol 70 (1) ◽  
pp. 223-241
Author(s):  
Larry Gedney ◽  
Steve Estes ◽  
Nirendra Biswas

abstract Since a series of moderate earthquakes near Fairbanks, Alaska in 1967, the “Fairbanks seismic zone” has maintained a consistently high level of seismicity interspersed with sporadic earthquake swarms. Five swarms occurring since 1970 demonstrate that tightly compacted centers of activity have tended to migrate away from the epicentral area of the 1967 earthquakes. Comparative b-coefficients of the first four swarms indicate that they occurred under different relative stress conditions than the last episode, which exhibited a higher b-value and was, in fact, a main shock of magnitude 4.6 with a rapidly decaying aftershock sequence. This last recorded sequence in February 1979 was an extension to greater depths along a lineal seismic zone whose first recorded activation occurred during a swarm two years earlier. Focal mechanism solutions indicate a north-south orientation of the greatest principal stress axis, σ1, in the area. A dislocation process related to crustal spreading between strands of a right-lateral fault, similar to that which has been inferred for southern California, is suggested.


2011 ◽  
Vol 52 (3) ◽  
pp. 352-357 ◽  
Author(s):  
Masaki Tanaka ◽  
Sunao Sadamatsu ◽  
Hiroto Nakamura ◽  
Kenji Higashida

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2537-2542 ◽  
Author(s):  
GUOYONG WANG ◽  
ZHONGHAO JIANG ◽  
JIANSHE LIAN

A fully dense electrodeposited microcrystalline copper with nano-scale twins was synthesized by electrodeposition. The microstructure of this copper was analyzed X-ray diffractometer (XRD) and by transmission electron microscopy (TEM). The grains of mean size about 2mm were divided by high density of growth twins with mean lamellar thickness of about 90 nm. Tensile tests at different strain rates and room temperature showed that the strength increased from 379 MPa to 458 MPa with strain rate increasing from 10-5 s-1 to 0.1 s-1. The elongations to fracture were in the range of 13.6~15.5%. So this Cu has good combination of strength and ductility. The strengths are much higher than that determined by Hall-Petch relation with the same grain size, which means that twin boundaries are effective in blocking dislocation motion. The strain rate sensitivity and activation volume estimated from the flow stress versus strain curves was 0.016 and 84 b3~69b3, respectively. Such a large activation volume indicates that the deformation of this copper was controlled by dislocation process.


2006 ◽  
Vol 175 (2) ◽  
pp. 261-270 ◽  
Author(s):  
Britta Mueller ◽  
Brendan N. Lilley ◽  
Hidde L. Ploegh

Protein quality control in the endoplasmic reticulum (ER) involves recognition of misfolded proteins and dislocation from the ER lumen into the cytosol, followed by proteasomal degradation. Viruses have co-opted this pathway to destroy proteins that are crucial for host defense. Examination of dislocation of class I major histocompatibility complex (MHC) heavy chains (HCs) catalyzed by the human cytomegalovirus (HCMV) immunoevasin US11 uncovered a conserved complex of the mammalian dislocation machinery. We analyze the contributions of a novel complex member, SEL1L, mammalian homologue of yHrd3p, to the dislocation process. Perturbation of SEL1L function discriminates between the dislocation pathways used by US11 and US2, which is a second HCMV protein that catalyzes dislocation of class I MHC HCs. Furthermore, reduction of the level of SEL1L by small hairpin RNA (shRNA) inhibits the degradation of a misfolded ribophorin fragment (RI332) independently of the presence of viral accessories. These results allow us to place SEL1L in the broader context of glycoprotein degradation, and imply the existence of multiple independent modes of extraction of misfolded substrates from the mammalian ER.


1983 ◽  
Vol 4 ◽  
pp. 73-78 ◽  
Author(s):  
L. W. Gold

An investigation was undertaken of the creep of columnar-grained ice under constant compressive stresses of 98 and 59 kPa in order to extend the observed relationship between strain-rate and stress further into the low-stress region. Stress was applied perpendicular to the long direction of the grains. Observations were made for temperatures between -5 and -40°C. The steady-state creep rate for secondary creep was not yet attained for strain of 1.4% and stress of 98 kPa. An initial yield was observed at that stress in the strain range of 0.2 to 0.3%, similar to that seen at higher stress. The observations showed that the strain-rate tended to a linear dependence on stress below 49 kPa and that more than one dislocation process with different values for the stress exponent may contribute to the strain at higher stresses. An activation energy of 63 kJ mol−1 was consistent with the observed temperature dependence of the strain-rate. Straining ice to a given strain under a stress of about 0.3 MPa and then reducing the load may be a convenient way to study the stress, strain and temperature dependence of the strain-rate at low stress.


Sign in / Sign up

Export Citation Format

Share Document