Prediction of atrial fibrillation onset after cardiac surgery using monophasic action potential (MAP)

EP Europace ◽  
2001 ◽  
Vol 2 ◽  
pp. A15-A15
EP Europace ◽  
2001 ◽  
Vol 2 (Supplement_1) ◽  
pp. A15-A15
Author(s):  
G. Di Martino ◽  
G. Bombardieri ◽  
R. Zamparelli ◽  
T. Sanna ◽  
C. Militello ◽  
...  

Heart ◽  
1998 ◽  
Vol 80 (5) ◽  
pp. 467-472 ◽  
Author(s):  
A M Pichlmaier ◽  
V Lang ◽  
W Harringer ◽  
B Heublein ◽  
M Schaldach ◽  
...  

1987 ◽  
Vol 253 (4) ◽  
pp. H863-H868 ◽  
Author(s):  
D. E. Euler ◽  
P. J. Scanlon

This study was designed to evaluate the importance of local release of autonomic neuromediators when electrical stimuli are applied to the right atrium to measure the atrial fibrillation threshold (AFT). Experiments were performed in 16 open-chest dogs anesthetized with alpha-chloralose. The dogs were denervated by bilateral transection of the stellates and cervical vagi. The AFT was determined in 11 dogs by delivering either a train of stimuli (14 pulses, 4 ms, 100 Hz) or a single stimulus (10 ms) to the right atrium during its vulnerable period. In eight dogs, beta-adrenergic blockade with timolol (0.1 mg/kg) had no effect on the AFT determined with either method. Atropine (0.2 mg/kg), given after timolol, significantly increased the train-of-pulses AFT from 4.7 +/- 0.4 to 32.3 +/- 4.6 mA (P less than 0.001). The single-pulse AFT increased from 16.5 +/- 1.5 to 17.8 +/- 1.5 mA (P less than 0.05). Atropine had a similar effect on the AFT when it was given in the absence of timolol (n = 3). In five additional dogs, a monophasic action potential was recorded while a 10-mA train was delivered to the atrium during its absolute refractory period. There was marked shortening of the monophasic action potential duration (55 +/- 6 ms) in the first beat after the train. The shortening was totally abolished by atropine (0.2 mg/kg). The results suggest that a train of stimuli liberates local stores of acetylcholine, which cause a shortening of atrial repolarization time and a profound decrease in the current necessary to evoke fibrillation.


2000 ◽  
Vol 11 (11) ◽  
pp. 1262-1269 ◽  
Author(s):  
HUUB M.W. VELDEN ◽  
LUCIE ZEE ◽  
MAURITS C.E.F. WIJFFELS ◽  
CARLO LEUVEN ◽  
RICK DORLAND ◽  
...  

2002 ◽  
Vol 282 (3) ◽  
pp. H855-H861 ◽  
Author(s):  
Xiaohong Zhou ◽  
Jian Huang ◽  
Raymond E. Ideker

To investigate the possibility of transmural recording of repolarization through the ventricular wall, KCl monophasic action potential (MAP) electrodes positioned along plunge needles were developed and tested. The MAP electrode consists of a silver wire surrounded by agarose gel containing KCl, which slowly eluted into the adjacent tissue to depolarize it. In six dogs, a plunge needle containing three KCl MAP electrodes was inserted into the left ventricle to simultaneously record from the subepicardium, midwall, and subendocardium. In six pigs, eight plunge needles containing three KCl MAP electrodes and two plunge needles containing similar electrodes except for the absence of KCl were inserted into the ventricles. In three guinea pig papillary muscles, a KCl electrode was used to record MAPs along with two microelectrodes for recording transmembrane potentials. Transmural MAP recordings could be made for >1 h in dogs and >2 h in pigs with a significant decrease in MAP amplitude over time but without a significant change in MAP duration. With the electrodes without KCl in pigs, the injury potentials subsided in <30 min. When the pacing rate was changed to alter the action potential duration and refractory period in dogs, the MAP duration correlated with the local effective refractory period ( r = 0.94). The time course of the MAP duration recorded with a KCl MAP electrode in guinea pig papillary muscles corresponded well with that of the transmembrane potential recorded with an adjacent microelectrode. It is possible to record transmural repolarization of the ventricles with KCl MAP electrodes on plunge needles. The MAP is caused by the KCl rather than being a nonspecific injury potential.


Sign in / Sign up

Export Citation Format

Share Document