scholarly journals Transmural recording of monophasic action potentials

2002 ◽  
Vol 282 (3) ◽  
pp. H855-H861 ◽  
Author(s):  
Xiaohong Zhou ◽  
Jian Huang ◽  
Raymond E. Ideker

To investigate the possibility of transmural recording of repolarization through the ventricular wall, KCl monophasic action potential (MAP) electrodes positioned along plunge needles were developed and tested. The MAP electrode consists of a silver wire surrounded by agarose gel containing KCl, which slowly eluted into the adjacent tissue to depolarize it. In six dogs, a plunge needle containing three KCl MAP electrodes was inserted into the left ventricle to simultaneously record from the subepicardium, midwall, and subendocardium. In six pigs, eight plunge needles containing three KCl MAP electrodes and two plunge needles containing similar electrodes except for the absence of KCl were inserted into the ventricles. In three guinea pig papillary muscles, a KCl electrode was used to record MAPs along with two microelectrodes for recording transmembrane potentials. Transmural MAP recordings could be made for >1 h in dogs and >2 h in pigs with a significant decrease in MAP amplitude over time but without a significant change in MAP duration. With the electrodes without KCl in pigs, the injury potentials subsided in <30 min. When the pacing rate was changed to alter the action potential duration and refractory period in dogs, the MAP duration correlated with the local effective refractory period ( r = 0.94). The time course of the MAP duration recorded with a KCl MAP electrode in guinea pig papillary muscles corresponded well with that of the transmembrane potential recorded with an adjacent microelectrode. It is possible to record transmural repolarization of the ventricles with KCl MAP electrodes on plunge needles. The MAP is caused by the KCl rather than being a nonspecific injury potential.

1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


1994 ◽  
Vol 267 (3) ◽  
pp. H1157-H1166 ◽  
Author(s):  
G. M. Wahler ◽  
S. J. Dollinger ◽  
J. M. Smith ◽  
K. L. Flemal

The rat ventricular action potential shortens after birth. The contribution of increases in the transient outward current (Ito) to postnatal action potential shortening was assessed by measuring Ito in isolated cells and by determining the effect of 2 mM 4-aminopyridine (4-AP) on the action potentials of papillary muscles. 4-AP had no effect on 1-day action potential duration at 25% repolarization (APD25), and 1-day cells had little Ito. In 8- to 10-day muscles, 4-AP caused a small, but significant, increase in APD25. Ito increased slightly between day 1 and days 8-10, but this increase was not significant. Most of the increase in Ito (79%) and in the response to 4-AP (64%) occurred between days 8-10 and adult; however, approximately 75% of the APD25 shortening took place by days 8-10. Thus, while Ito may contribute to repolarization in late neonatal and adult cells, the different time courses of action potential shortening and increases in Ito suggest that changes in Ito are unlikely to be responsible for most of the postnatal action potential shortening.


1995 ◽  
Vol 269 (2) ◽  
pp. H734-H742 ◽  
Author(s):  
U. K. Decking ◽  
T. Reffelmann ◽  
J. Schrader ◽  
H. Kammermeier

The functional role of ATP-dependent potassium (KATP) in hypoxic cardiac failure was investigated in isolated guinea pig hearts with glibenclamide and rimalkalim as inhibitor and activator, respectively. Monophasic action potential duration at 90% of repolarization (MAP50), left ventricular function, and cardiac energy status (31P nuclear magnetic resonance spectroscopy) were measured during normotoxic (95% O2) and hypoxic (20% O2) perfusion. In normoxic hearts, 1 microM glibenclamide did not affect MAP50, left ventricular function, and coronary flow (n = 4). In contrast, rimalkalim rapidly shortened MAP50 and left ventricular pressure (LVP) in a dose-dependent fashion (e.g., by 60.2 +/- 3.5 and 80.8 +/- 8.2%, respectively, with 0.6 microM rimalkalim). This latter effect was reversed by 1 microM (glibenclamide (n = 4). With hypoxic perfusion, a reduction in LVP was observed, along with a shortening of the action potential (MAP90; 202 +/- 13 vs. 164 +/- 9 ms) and an increase in coronary flow. Glibenclamide (1 microM) reversed the MAP90 shortening and the increase in coronary flow. In addition, glibenclamide increased LVP transiently (n = 4). When coronary flow of hypoxic hearts was kept constant, however, glibenclamide elicited a sustained positive inotropic effect (n = 7). After glibenclamide, an increase in LVP from 54 +/- 4 to 64 +/- 3 mmHg was observed, along with a reduction in the free energy change of ATP hydrolysis from -54.5 +/- 1.9 to -52.9 +/- 0.2 nJ/mol and a further increase in the coronary venous adenosine from 269 +/- 48 to 1,680 +/- 670 nmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)


1956 ◽  
Vol 186 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Brian F. Hoffman ◽  
E. E. Suckling

The effects of changes in the extracellular concentrations of Ca, K and Mg on the transmembrane resting and action potentials of single fibers of the auricle, ventricle and specialized conducting system of the dog heart have been studied by means of intracellular microelectrodes. With respect to Ca, the three tissues exhibit quite different sensitivities. Changes in concentration of this ion alter the time course of the action potential recorded from auricle and ventricle but have little effect on the action potential configuration of the Purkinje fiber. In the latter tissue, on the other hand, pacemaker activity is most strongly enhanced by Ca depletion and excitability is lost at Ca concentrations permitting normal propagation in papillary muscle. The effect of K on the resting transmembrane potential is dependent on the simultaneous Ca concentration. The interrelationship is such that the depolarizing effect of high K is decreased by elevated Ca and the depolarization produced by low K is diminished by low levels of Ca. Changes in the concentration of Mg have little effect on the transmembrane potentials of cardiac muscle unless the level of Ca is low. Under this condition a simultaneous decrease in Mg gives rise to a marked prolongation of the action potential duration of both auricle and ventricle. Some evidence for the basic similarity of the processes underlying repolarization in these three tissues is presented and it is thought the normally encountered differences in their action potentials may be related to the sensitivity of each tissue to extracellular Ca.


Sign in / Sign up

Export Citation Format

Share Document