Tracking the drift of a human body in the coastal ocean using numerical prediction models of the oceanic, atmospheric and wave conditions

2002 ◽  
Vol 42 (3) ◽  
pp. 143-151 ◽  
Author(s):  
S. Carniel ◽  
G. Umgiesser ◽  
M. Sclavo ◽  
L.H. Kantha ◽  
S. Monti
Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 159
Author(s):  
Paulo J. S. Gonçalves ◽  
Bernardo Lourenço ◽  
Samuel Santos ◽  
Rodolphe Barlogis ◽  
Alexandre Misson

The purpose of this work is to develop computational intelligence models based on neural networks (NN), fuzzy models (FM), support vector machines (SVM) and long short-term memory networks (LSTM) to predict human pose and activity from image sequences, based on computer vision approaches to gather the required features. To obtain the human pose semantics (output classes), based on a set of 3D points that describe the human body model (the input variables of the predictive model), prediction models were obtained from the acquired data, for example, video images. In the same way, to predict the semantics of the atomic activities that compose an activity, based again in the human body model extracted at each video frame, prediction models were learned using LSTM networks. In both cases the best learned models were implemented in an application to test the systems. The SVM model obtained 95.97% of correct classification of the six different human poses tackled in this work, during tests in different situations from the training phase. The implemented LSTM learned model achieved an overall accuracy of 88%, during tests in different situations from the training phase. These results demonstrate the validity of both approaches to predict human pose and activity from image sequences. Moreover, the system is capable of obtaining the atomic activities and quantifying the time interval in which each activity takes place.


2017 ◽  
Vol 37 (4) ◽  
pp. 1380-1393 ◽  
Author(s):  
Parya Broomandi ◽  
Bahram Dabir ◽  
Babak Bonakdarpour ◽  
Yousf Rashidi ◽  
Ali Akherati

2016 ◽  
Author(s):  
Heather E. Wheeler ◽  
Kaanan P. Shah ◽  
Jonathon Brenner ◽  
Tzintzuni Garcia ◽  
Keston Aquino-Michaels ◽  
...  

AbstractUnderstanding the genetic architecture of gene expression traits is key to elucidating the underlying mechanisms of complex traits. Here, for the first time, we perform a systematic survey of the heritability and the distribution of effect sizes across all representative tissues in the human body. We find that local h2 can be relatively well characterized with 59% of expressed genes showing significant h2 (FDR < 0.1) in the DGN whole blood cohort. However, current sample sizes (n ≤ 922) do not allow us to compute distal h2. Bayesian Sparse Linear Mixed Model (BSLMM) analysis provides strong evidence that the genetic contribution to local expression traits is dominated by a handful of genetic variants rather than by the collective contribution of a large number of variants each of modest size. In other words, the local architecture of gene expression traits is sparse rather than polygenic across all 40 tissues (from DGN and GTEx) examined. This result is confirmed by the sparsity of optimal performing gene expression predictors via elastic net modeling. To further explore the tissue context specificity, we decompose the expression traits into cross-tissue and tissue-specific components using a novel Orthogonal Tissue Decomposition (OTD) approach. Through a series of simulations we show that the cross-tissue and tissue-specific components are identifiable via OTD. Heritability and sparsity estimates of these derived expression phenotypes show similar characteristics to the original traits. Consistent properties relative to prior GTEx multi-tissue analysis results suggest that these traits reflect the expected biology. Finally, we apply this knowledge to develop prediction models of gene expression traits for all tissues. The prediction models, heritability, and prediction performance R2 for original and decomposed expression phenotypes are made publicly available (https://github.com/hakyimlab/PrediXcan).Author SummaryGene regulation is known to contribute to the underlying mechanisms of complex traits. The GTEx project has generated RNA-Seq data on hundreds of individuals across more than 40 tissues providing a comprehensive atlas of gene expression traits. Here, we systematically examined the local versus distant heritability as well as the sparsity versus polygenicity of protein coding gene expression traits in tissues across the entire human body. To determine tissue context specificity, we decomposed the expression levels into cross-tissue and tissue-specific components. Regardless of tissue type, we found that local heritability, but not distal heritability, can be well characterized with current sample sizes. We found that the distribution of effect sizes is more consistent with a sparse local architecture in all tissues. We also show that the cross-tissue and tissue-specific expression phenotypes constructed with our orthogonal tissue decomposition model recapitulate complex Bayesian multi-tissue analysis results. This knowledge was applied to develop prediction models of gene expression traits for all tissues, which we make publicly available.


Sign in / Sign up

Export Citation Format

Share Document