Mending mutations by in vivo site-directed mutagenesis

1998 ◽  
Vol 4 (5) ◽  
pp. 188-189
Author(s):  
Natasha J Caplen
2015 ◽  
Vol 417 ◽  
pp. 67-75 ◽  
Author(s):  
Erika G. Holland ◽  
Felicity E. Acca ◽  
Kristina M. Belanger ◽  
Mary E. Bylo ◽  
Brian K. Kay ◽  
...  

2017 ◽  
Vol 399 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Monika B. Dolinska ◽  
Yuri V. Sergeev

AbstractTyrosinase, a melanosomal glycoenzyme, catalyzes initial steps of the melanin biosynthesis. While glycosylation was previously studiedin vivo, we present three recombinant mutant variants of human tyrosinase, which were obtained using multiple site-directed mutagenesis, expressed in insect larvae, purified and characterized biochemically. The mutagenesis demonstrated the reduced protein expression and enzymatic activity due to possible loss of protein stability and protein degradation. However, the complete deglycosylation of asparagine residuesin vitro, including the residue in position 371, interrupts tyrosinase function, which is consistent with a melanin loss in oculocutaneous albinism type 1 (OCA1) patients.


2012 ◽  
Vol 195-196 ◽  
pp. 407-411
Author(s):  
Mu Qing Qiu

In order to develop an efficient site-directed mutagenesis method in vivo, the tests were tested by the following methods. The methods that the fragment knockouted ompR gene was constructed through overlapping PCR, digested by Notand Sal, ligated to plasmid pKOV were applied. The recombination plasmid was transformed into Escherichia coli WMC-001 strain, integrated into the genomic DNA through two step homologous recombination. The Escherichia coli WMC-001/ompR-mutant was obtained due to gene replacement. The fragment of the mutant ompR gene was amplified through overlapping PCR, cloned into pKOV vector. The recombinant plasmid was introduced into Escherichia coli WMC-001/ompR-mutant. The Escherichia coli WMC-001/ompR mutant was also obtained due to gene replacement. Results: The site-directed mutagenesis has been successfully constructed in the ompR gene by sequencing. Conclusion: The method is effective for construction of gene site-directed mutagenesis in vivo.


FEBS Letters ◽  
1992 ◽  
Vol 299 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Viktor Magdolen ◽  
Roland Schricker ◽  
Gertrud Strobel ◽  
Herbert Germaier ◽  
Wolfhard Bandlow

2001 ◽  
Vol 183 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Yan Ma ◽  
Paul W. Ludden

ABSTRACT Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria.Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of thenifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-32P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-14C]NAD individually upon UV irradiation, but most 14C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-14C]NAD suggested that Arg 101 is not absolutely required for NAD binding.


Sign in / Sign up

Export Citation Format

Share Document