1413 POSTER Prognostic influence of minimal residual disease detected by flow cytometry and peripheral blood stem cell transplantation by CD34+ selection in childhood advanced neuroblastoma

2007 ◽  
Vol 5 (4) ◽  
pp. 181
Author(s):  
J. Cai ◽  
J. Tang ◽  
Y. Tang ◽  
L. Jiang ◽  
C. Pan ◽  
...  
1993 ◽  
Vol 44 (1) ◽  
pp. 73-74 ◽  
Author(s):  
F. A. Älez Gonz Fernández ◽  
A. Villegas Martinéz ◽  
L. Llorente ◽  
E. Del Potro ◽  
J. Díaz Mediavilla

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1717-1717
Author(s):  
Maya Danielle Hughes ◽  
Rong Zeng ◽  
Kristen L. Miller ◽  
Soheil Meshinchi

Abstract Abstract 1717 FLT3 internal tandem duplication (FLT3/ITD) is a somatic mutation that is associated with therapy resistance in acute myeloid leukemia (AML). Early data demonstrated low sensitivity for this assay, thus limiting its utility to the evaluation of diagnostic specimens, and precluding its utility in remission samples. We inquired whether the standard FLT3/ITD assay can be modified to enable its utility to detect presence of residual disease in remission specimens. Enhanced FLT3/ITD assay sensitivity was accomplished by altering annealing temperature, increasing the number of cycles as well as amount and concentration of the product that was subjected to capillary electropheresis. To assess the sensitivity of the enhanced assay, FLT3/ITD positive cells M4V11 were serially diluted in a population of ITD negative cells (HL60). The concentration of M4V11 cells in each sample ranged from 10% to 0.0001%. PCR product was subjected to capillary electropheresis and the appropriate region of the electropherogram was examined for the presence of the appropriate mutant product length. Appropriate FLT3/ITD signal was detected in dilutions down to 0.01%, validating our ability to detect extremely low levels of FLT3/ITD. We subsequently examined the remission marrows from patients with a history of FLT3/ITD who had undergone stem cell transplantation. Available bone marrow specimens (N = 51) from patients who underwent stem cell transplantation for FLT3/ITD-positive AML were analyzed and the result was correlated with the available standard PCR as well as the available MRD assessment by muti-dimensional flow cytometry; samples negative for FLT3/ITD by standard assay (N=11) were then subjected to the enhanced PCR methodology. Available ITD length for each patient was used for examination of the appropriate region of the electropherogram in each case. Of the available 51 bone marrow specimens analyzed, 23 specimens had FLT3/ITD detectable by standard PCR protocol. Using our modified PCR method and capillary electrophoresis, an additional 13 specimens had identifiable FLT3/ITD. In 6/11 patients, where initial FLT3/ITD was negative by standard methodology, enhanced assay identified FLT3/ITD signal. In each case, detection of FLT3/ITD by the enhanced assay was followed by morphologic or immunophenotypic emergence of disease, prompting therapeutic intervention. We further evaluated the ability to detect FLT3/ITD in patients with minimal residual disease by flow cytometry. 33 of the bone marrow specimens analyzed had a less than 5% abnormal blast population as detectable via flow cytometry. Among these samples, 7 had FLT3/ITD detectable using standard detection techniques. An additional 11 samples had detectable FLT3/ITD when our modified protocol was employed. Of the specimens that had less than 1% abnormal blast population as detectable via flow cytometry (N = 27), 4 had FLT3/ITD detectable using the standard detection assay; when our modified protocol was employed, an additional 6 samples had detectable FLT3/ITD. 17 bone marrow specimens had no abnormal blast cells detectable via flow cytometry; of these samples 1 had detectable FLT3/ITD using the standard detection assay, while an additional 3 had detectable FLT3/ITD using our modified assay. In four patients, FLT3/ITD was detected in bone marrow specimens found to have flow cytometric MRD of 0% (N=2), 0.1% (N=1) and 0.4% (N=1). In two patients with no detectable disease by MDF, both had emergence of morphologic (60% blast) or immunophenotypic disease by MDF (1.1%) within 4–6 weeks of detection of FLT3/ITD by enhanced assay. In this study, we demonstrate that simple modifications to the FLT3/ITD genotyping assay significantly increases its sensitivity and provides a highly sensitive and very specific assay for identifying this disease associated mutation in remission specimens. The enhanced assay can be incorporated into the standard evaluation of remission status for patients with FLT3/ITD. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document