Effective thermal conductivity of heterogeneous two-phase material using the self-consistent finite element method

2001 ◽  
Vol 44 (8-9) ◽  
pp. 1955-1958 ◽  
Author(s):  
A Decarlis ◽  
M Jaeger
1999 ◽  
Vol 122 (1) ◽  
pp. 171-175 ◽  
Author(s):  
A. Decarlis ◽  
M. Jaeger ◽  
R. Martin

This paper concerns the determination of the effective thermal conductivity of heterogeneous media with randomly dispersed inclusions. Inclusions of arbitrary shape can be considered since the self-consistent problem is solved numerically with the finite element method. Results for many different cases of heterogeneous media with axially symmetrical inclusions are presented. Moreover, the influence of the inclusion’s shape on the pseudo-percolation threshold is investigated. [S0022-1481(00)00801-X]


2019 ◽  
pp. 308-308
Author(s):  
Zhong-Bin Zhang ◽  
C Congyu ◽  
Yang Liu ◽  
Li-Hua Cao

The accurate thermal conductivity of fouling plays a very significant role in designing heat exchanger. In this paper, a novel method of calculating the effective thermal conductivity (ETC) of particulate fouling is put forward by using Image-Pro-Plus image processing, the finite element method and ANSYS parametric design language (APDL). First of all, according to the analysis on the particulate fouling samples features, the particulate fouling is considered as porous media with fractal characteristics, whose microscopic network model is established using the finite element method, and each unit body material properties are randomly assigned by APDL. Secondly, ETC of particulate fouling model is calculated by the steady state plate method. And then, the influence of particulate fouling microstructure on ETC is explored. Last, it is also show that the calculation resulting of ETC agrees well with available experimental data and empirical correlation. Moreover, it has been shown that ETC of particulate fouling is closely associated with the porosity and pore size. The method can be used to research on the thermal conductivity of fouling, discuss the influence of microstructure on ETC of fouling, and provide the guidelines for designing of heat exchanger on calculating accurate thermal conductivity of fouling.


2017 ◽  
Vol 48 (4) ◽  
pp. 685-712 ◽  
Author(s):  
Muhammad Owais Raza Siddiqui ◽  
Danmei Sun

The research reports the development of geometrical models of woven fabric structures and evaluation of fabric thermal properties by using finite element method. A mesoscopic scale modelling approach was used to investigate the effective thermal conductivity and thermal resistance of woven textile structures. Various techniques, including scanning electron microscopy and experimental methods, have been adopted to obtain the actual three-dimensional parameters of the fabrics for finite element analysis. The research revealed that the thermal anisotropy of fibres, fibres material orientation and temperature-dependent thermal conductivity of fibre has a significant impact on the effective thermal conductivity of fabrics because experimental and simulated results were highly correlated with the consideration of above-mentioned factors.


Sign in / Sign up

Export Citation Format

Share Document