thermal anisotropy
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 2)

Nature ◽  
2021 ◽  
Vol 597 (7878) ◽  
pp. 660-665
Author(s):  
Shi En Kim ◽  
Fauzia Mujid ◽  
Akash Rai ◽  
Fredrik Eriksson ◽  
Joonki Suh ◽  
...  

AbstractThe densification of integrated circuits requires thermal management strategies and high thermal conductivity materials1–3. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis4,5. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS2, one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS2 (57 ± 3 mW m−1 K−1) and WS2 (41 ± 3 mW m−1 K−1) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.


2021 ◽  
Vol 48 (9) ◽  
Author(s):  
G. Diego Gatta ◽  
Francesco Pagliaro ◽  
Paolo Lotti ◽  
Alessandro Guastoni ◽  
Laura Cañadillas-Delgado ◽  
...  

AbstractThe thermal behaviour of a natural allanite-(Ce) has been investigated up to 1073 K (at room pressure) by means of in situ synchrotron powder X-ray diffraction and single-crystal neutron diffraction. Allanite preserves its crystallinity up to 1073 K. However, up to 700 K, the thermal behaviour along the three principal crystallographic axes, of the monoclinic β angle and of the unit-cell volume follow monotonically increasing trends, which are almost linear. At T > 700–800 K, a drastic change takes place: an inversion of the trend is observed along the a and b axes (more pronounced along b) and for the monoclinic β angle; in contrast, an anomalous increase of the expansion is observed along the c axis, which controls the positive trend experienced by the unit-cell volume at T > 700–800 K. Data collected back to room T, after the HT experiments, show unit-cell parameters significantly different with respect to those previously measured at 293 K: allanite responds with an ideal elastic behaviour up to 700 K, and at T > 700–800 K its behaviour deviates from the elasticity field. The thermo-elastic behaviour up to 700 K was modelled with a modified Holland–Powell EoS; for the unit-cell volume, we obtained the following parameters: VT0 = 467.33(6) Å3 and αT0(V) = 2.8(3) × 10–5 K−1. The thermal anisotropy, derived on the basis of the axial expansion along the three main crystallographic directions, is the following: αT0(a):αT0(b):αT0(c) = 1.08:1:1.36. The T-induced mechanisms, at the atomic scale, are described on the basis of the neutron structure refinements at different temperatures. Evidence of dehydroxylation effect at T ≥ 848 K are reported. A comparison between the thermal behaviour of allanite, epidote and clinozoisite is carried out.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Sarfraz ◽  
Gohar Abbas ◽  
Hashim Farooq ◽  
I. Zeba

Abstract A sequence of in situ measurements points the presence of non-thermal species in the profile of particle distributions. This study highlights the role of such energetic electrons on the wave-spectrum. Using Vlasov–Maxwell’s model, the dispersion relations of the parallel propagating modes along with the space scale of damping are discussed using non-relativistic bi-Maxwellian and bi-Kappa distribution functions under the weak field approximation, i.e., ω − k . v > Ω 0 $\left\vert \omega -\mathbf{k}.\mathbf{v}\right\vert { >}{{\Omega}}_{0}$ . Power series and asymptotic expansions of plasma dispersion functions are performed to derive the modes and spatial damping of waves, respectively. The role of these highly energetic electrons is illustrated on real frequency and anomalous damping of R and L-modes which is in fact controlled by the parameter κ in the dispersion. Further, we uncovered the effect of external magnetic field and thermal anisotropy on such spatial attenuation. In global perspective of the kinetic model, it may be another step.


2021 ◽  
Vol 22 ◽  
pp. 100843
Author(s):  
Amman Jakhar ◽  
Aurabinda Swain ◽  
Anirban Bhattacharya ◽  
Prasenjit Rath ◽  
Swarup Kumar Mahapatra

Geothermics ◽  
2021 ◽  
Vol 92 ◽  
pp. 102059
Author(s):  
A. Shakirov ◽  
E. Chekhonin ◽  
Yu. Popov ◽  
E. Popov ◽  
M. Spasennykh ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Satoshi Ishii ◽  
Makoto Higashino ◽  
Shinya Goya ◽  
Evgeniy Shkondin ◽  
Katsuhisa Tanaka ◽  
...  

Abstract High optical absorptivity or a large absorption cross-section is necessary to fully utilize the irradiation of light for photothermal heating. Recently, titanium nitride (TiN) nanostructures have been demonstrated to be robust optical absorbers in the optical range owing to their nonradiative decay processes enhanced by broad plasmon resonances. Because the photothermally generated heat dissipates to the surroundings, suppressing heat transfer from TiN nanostructures is crucial for maximizing the photothermal temperature increase. In the current work, compared to the planar TiN film, high-aspect-ratio TiN nanostructures with subwavelength periodicities have been demonstrated to enhance the photothermal temperature increase by a 100-fold using nanotube samples. The reason is attributed to the extremely anisotropic effective thermal conductivities. Our work has revealed that high-aspect-ratio TiN nanostructures are effective in improving photothermal heating, and they can be used in various applications, such as solar heating, chemical reactions, and microfluidics.


Author(s):  
Jiangcun Zhou ◽  
Ernian Pan ◽  
Michael Bevis

Summary We present a theory of modern, thermally-induced deformation in a realistic Earth. The heat conduction equation is coupled with standard elastic deformation theory to construct a boundary-value problem comprised of eighth-order differential equations. The accurate and stable dual variable and position propagating matrix technique is introduced to solve the boundary-value problem. The thermal load Love numbers are defined to describe the displacements and potential changes driven by thermally-induced deformation. The proposed analytical method is validated by comparing the present results with exact solutions for a homogeneous sphere, which are also derived in this paper. The analytical method is then applied to a realistic Earth model to evaluate the effects of layering and self-gravitation of the Earth on displacement and changes of potential. Furthermore, the frequency-dependence in the thermal load is illustrated by invoking different thermal periodicities in the computation. Thermal anisotropy is also considered by comparing the results obtained using isotropic and transversely isotropic Earth models. Results show that, when simulating thermally-induced deformation, invoking a homogeneous spherical Earth leads to results that substantially differ from those obtained using a more realistic Earth model.


2020 ◽  
Vol 38 (3) ◽  
pp. 181-187
Author(s):  
Sandeep Kumar ◽  
Y. K. Kim ◽  
T. Kang ◽  
Min Sup Hur ◽  
Moses Chung

AbstractThe nonlinear evolution of electron Weibel instability in a symmetric, counterstream, unmagnetized electron–positron e−/e+ plasmas is studied by a 2D particle-in-cell (PIC) method. The magnetic field is produced and amplified by the Weibel instability, which extracts energy from the plasma anisotropy. A weakly relativistic drift velocity of 0.5c is considered for two counterstreaming e−/e+ plasma flows. Simulations show that in a homogeneous e−/e+ plasma distribution, the magnetic field amplifies exponentially in the linear regime and rapidly decays after saturation. However, in the case of inhomogeneous e−/e+ plasma distribution, the magnetic field re-amplifies at post-saturation. We also find that the amount of magnetic field amplification at post-saturation depends on the strength of the density inhomogeneity of the upstream plasma distribution. The temperature calculation shows that the finite thermal anisotropy exists in the case of an inhomogeneous plasma distribution which leads to the second-stage magnetic field amplification after the first saturation. Such density inhomogeneities are present in a variety of astrophysical sources: for example, in supernova remnants and gamma-ray bursts. Therefore, the present analysis is very useful in understanding these astrophysical sources, where anisotropic density fluctuations are very common in the downstream region of the relativistic shocks and the widely distributed magnetic field.


Sign in / Sign up

Export Citation Format

Share Document