Interaction of probe molecules with active sites on cobalt, copper and zinc-exchanged SAPO-18 solid acid catalysts

2003 ◽  
Vol 203 (1-2) ◽  
pp. 193-202 ◽  
Author(s):  
Chris Kladis ◽  
Suresh K. Bhargava ◽  
Deepak B. Akolekar
2018 ◽  
Vol 8 (20) ◽  
pp. 5155-5164 ◽  
Author(s):  
Matthew E. Potter ◽  
Julija Kezina ◽  
Richard Bounds ◽  
Marina Carravetta ◽  
Thomas M. Mezza ◽  
...  

Framework topology and the acid sites significantly influence the Beckmann rearrangement, affecting the design of solid-acid catalysts.


1997 ◽  
Vol 61 (1-4) ◽  
pp. 67-81 ◽  
Author(s):  
Rajiv Shah ◽  
Julian D. Gale ◽  
Michael C. Payne

1992 ◽  
Vol 57 (11) ◽  
pp. 2241-2247 ◽  
Author(s):  
Tomáš Hochmann ◽  
Karel Setínek

Solid acid catalysts with acid strength of -14.52 < H0 < -8.2 were prepared by sulfate treatment of the samples of boehmite calcined at 105-800 °C. Two preparation methods were used: impregnation of the calcined boehmite with 3.5 M H2SO4 or mixing of the boehmite samples with anhydrous aluminum sulfate, in both cases followed by calcination in nitrogen at 650 °C. The catalysts were characterized by measurements of surface area, adsorption of pyridine and benzene, acid strength measurements by the indicator method and by catalytic activity tests in the isomerization of cyclohexene, p-xylene and n-hexane. Properties of the catalysts prepared by both methods were comparable.


Author(s):  
Yutian Qin ◽  
Jun Guo ◽  
Meiting Zhao

AbstractBiomass is a green and producible source of energy and chemicals. Hence, developing high-efficiency catalysts for biomass utilization and transformation is urgently demanded. Metal–organic framework (MOF)-based solid acid materials have been considered as promising catalysts in biomass transformation. In this review, we first introduce the genre of Lewis acid and Brønsted acid sites commonly generated in MOFs or MOF-based composites. Then, the methods for the generation and adjustment of corresponding acid sites are overviewed. Next, the catalytic applications of MOF-based solid acid materials in various biomass transformation reactions are summarized and discussed. Furthermore, based on our personal insights, the challenges and outlook on the future development of MOF-based solid acid catalysts are provided. We hope that this review will provide an instructive roadmap for future research on MOFs and MOF-based composites for biomass transformation.


Sign in / Sign up

Export Citation Format

Share Document