Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith

Author(s):  
K. Benn ◽  
S.R. Paterson ◽  
S.P. Lund ◽  
G.S. Pignotta ◽  
S. Kruse
Keyword(s):  
Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87
Author(s):  
Giovanni Tocci Monaco ◽  
Nicholas Fantuzzi ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano

An analytical method is presented in this work for the linear vibrations and buckling of nano-plates in a hygro-thermal environment. Nonlinear von Kármán terms are included in the plate kinematics in order to consider the instability phenomena. Strain gradient nonlocal theory is considered for its simplicity and applicability with respect to other nonlocal formulations which require more parameters in their analysis. Present nano-plates have a coupled magneto-electro-elastic constitutive equation in a hygro-thermal environment. Nano-scale effects on the vibrations and buckling behavior of magneto-electro-elastic plates is presented and hygro-thermal load outcomes are considered as well. In addition, critical temperatures for vibrations and buckling problems are analyzed and given for several nano-plate configurations.


Author(s):  
Jean-Claude Sibuet ◽  
Shiri P. Srivastava ◽  
Wim Spakman
Keyword(s):  

2012 ◽  
Vol 49 ◽  
pp. 217-230 ◽  
Author(s):  
Erik A. Kneller ◽  
Christopher A. Johnson ◽  
Garry D. Karner ◽  
Jesse Einhorn ◽  
Thomas A. Queffelec

2006 ◽  
Vol 85 (2) ◽  
pp. 77-129 ◽  
Author(s):  
W. Sissingh

AbstractA review of the sequence stratigraphic development of the Tertiary basins of the North and West Alpine Foreland domains shows that their structural and depositional history was episodically affected by brief tectonic phases. These were associated with intermittent deformation events induced by the collisional convergence and compressional coupling of the Apulian and Iberian microplates with the European Plate. The plate kinematics-related episodicity was essentially isochronously recorded in the basin fills of the Alpine Foreland region. These are generally correlative with changes in eustatic sea level. The ensuing correlative successions of so-called Cenozoic Rift and Foredeep (CRF) sequences and phases can be traced throughout the European Cenozoic Rift System and Alpine Foreland Basin. Their temporal correlation indicates that, apparently, the changes in the plate collision-related stress regime of the Alpine Foreland were repeatedly accompanied by coeval changes in eustatic sea level. To test and substantiate the validity of this inferred causal relationship between intraplate deposition, plate kinematics and eustacy, the tectono-sedimentary evolution of the basins of the Mediterranean plate-boundary zone has been analysed in conjunction with a review of the plate-boundary events in the North Atlantic. Within the uncertainty range of available datings, synchroneity could thus be demonstrated for the punctuated tectonostratigraphic development of basins of the western Mediterranean (comprising the Liguro-Provençal Basin, Valencia Trough, Sardinia Rift and Tyrrhenian Basin), the Apenninic-Calabrian Arc, the Betic domain (including the Alboran Basin) and the North and West Alpine Foreland regions. Similar temporal correlations of plate tectonicsrelated events near the Mid-Atlantic Ridge in the North Atlantic and tectonostratigraphic sequences and phases of the Alpino-Pyrenean Foreland basins are further evidence of a common causal mechanism. The driving mechanisms appear to have been the northward drift of Africa and the resulting mechanical coupling of Apulia and Iberia with the southern passive margin of Europe, as well as the stepwise opening of the North Atlantic and accompanying episodic plate re-organisations of the Mid-Atlantic Ridge.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 366 ◽  
Author(s):  
Francesco Guerrera ◽  
Manuel Martín-Martín ◽  
Mario Tramontana

In the last 40 years, several models based on very different methodological approaches have been proposed to interpret the complex geodynamic evolution of the central-western Mediterranean area and, in particular, of the Cenozoic basins. The persistence of numerous interpretations and still-open problems resulted in the proliferation of very different models. The reconstructions presented are highly influenced by difficulties often encountered in considering constraints introduced by models built by means of completely different methodological approaches. For example, major difficulties can arise in integrating data from individual classical disciplines (i.e., geology, stratigraphy, geophysics, tectonics, magmatology and plate kinematics) with those resulting from the use of modern technologies (i.e., digital processing, uses of software, field observations using drones, etc.) and generally aimed to support specific topics. These considerations lead researchers to believe that a multidisciplinary approach would always be auspicious for these studies, because a greater control of the reconstruction of geologic and geodynamic events, and, therefore, for resulting models, would be ensured. After some considerations about different types of literature models based on specific investigation methodologies, the updating of a recently presented evolutionary model is proposed by attempting to integrate as much data as possible about the Cenozoic basins of the central-western Mediterranean area.


Sign in / Sign up

Export Citation Format

Share Document