Numerical simulations of magma ascent along volcanic conduits

Author(s):  
P. Papale
2020 ◽  
Author(s):  
Oleg Melnik ◽  
Yulia Tsvetkova

<p>At large crystal contents magma exhibits non-Newtonian behavior, typically shear thinning due to crystal orientation along streamlines. 1D models widely used for extrusive eruption simulations cannot capture efficiently the complexity of cross-conduit variations of the properties of magmas as they assume parabolic velocity profile and averaged properties of magma. Large aspect ratios of volcanic conduits (length/diameter) makes use of fully 2D numerical models computationally expensive and not reliable because of extremely large cross-conduit variation of parameters.</p><p>Here we present results of numerical simulations of a quasi-2D model that accounts for magma crystallization with the release of the latent heat, shear thinning rheology, heat transfer and viscous dissipation. Simulated velocity profile is far from parabolic. Shear layers form initially near the wall of the conduit and migrate towards the interior as magma ascends. Shear heating results in significant increases in temperature of the magma in narrow shear bands. There is a drastic difference between the predictions of 1D and quasi-2D models in terms of pressure-discharge rate relations. Lava dome morphology can be strongly affected by the formation of shear zones inside volcanic conduits during magma ascent.</p>


2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


2007 ◽  
Vol 17 (4) ◽  
pp. 347-380 ◽  
Author(s):  
Mohammad P. Fard ◽  
Denise Levesque ◽  
Stuart Morrison ◽  
Nasser Ashgriz ◽  
J. Mostaghimi

Sign in / Sign up

Export Citation Format

Share Document