Genetic diversity challenges malaria control

2002 ◽  
Vol 2 (9) ◽  
pp. 511 ◽  
Author(s):  
Dorothy Bonn
2020 ◽  
Author(s):  
Jason A. Hendry ◽  
Dominic Kwiatkowski ◽  
Gil McVean

AbstractThere is an abundance of malaria genetic data being collected from the field, yet using this data to understand features of regional epidemiology remains a challenge. A key issue is the lack of models that relate parasite genetic diversity to epidemiological parameters. Classical models in population genetics characterize changes in genetic diversity in relation to demographic parameters, but fail to account for the unique features of the malaria life cycle. In contrast, epidemiological models, such as the Ross-Macdonald model, capture malaria transmission dynamics but do not consider genetics. Here, we have developed an integrated model encompassing both parasite evolution and regional epidemiology. We achieve this by combining the Ross-Macdonald model with an intra-host continuous-time Moran model, thus explicitly representing the evolution of individual parasite genomes in a traditional epidemiological framework. Implemented as a stochastic simulation, we use the model to explore relationships between measures of parasite genetic diversity and parasite prevalence, a widely-used metric of transmission intensity. First, we explore how varying parasite prevalence influences genetic diversity at equilibrium. We find that multiple genetic diversity statistics are correlated with prevalence, but the strength of the relationships depends on whether variation in prevalence is driven by host- or vector-related factors. Next, we assess the responsiveness of a variety of statistics to malaria control interventions, finding that those related to mixed infections respond quickly (~ months) whereas other statistics, such as nucleotide diversity, may take decades to respond. These findings provide insights into the opportunities and challenges associated with using genetic data to monitor malaria epidemiology.Author summaryKnowledge of how the prevalence of P.falciparum malaria varies, either between regions or through time, is critical to the operation of malaria control programs. Yet obtaining this information through traditional methods is fraught with challenges. Parasite genetic data is increasingly accessible, and may provide an alternative means to estimate P.falciparum prevalence in the field. However, our understanding of how the genetic diversity of parasite populations relates to prevalence is limited, and suitable models to guide our understanding are largely lacking. Here, we merge two classical models – the Ross-Macondald and the Moran – to produce a framework in which the relationships between parasite genetic diversity and prevalence can be explored. We find that several genetic diversity statistics are correlated with prevalence, although to differing degrees, and over different time scales. Overall, statistics related to mixed infection are robustly and rapidly responsive to changes in prevalence, suggesting they may be a useful focal point for the development of malaria surveillance methods that harness genetic data.


2020 ◽  
Author(s):  
Abdulhakim Abamecha ◽  
Hassan El-Abid ◽  
Daniel Yilma ◽  
Wondimagegn Addisu ◽  
Achim Ibenthal ◽  
...  

Abstract Background: Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of Plasmodium falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. In this study, we investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia.Methods: A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged six months to sixty years, who visited the health facilities during study evaluating the efficacy of arthemeter-lumefantrine from September-December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis.Results: Of 80 qPCR-positive samples analyzed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95 % and 98.8%, respectively. Allelic variation of 90% (72/80) for msp-1 and 86.2% (69/80) for msp-2 were observed. K1 was the predominant msp-1 allelic family detected in 20.8% (15/72) of the samples followed by MAD20 and RO33. Within msp-2, allelic family FC27 showed a higher frequency (26.1%) compared to IC/3D7 (15.9%). Ten different alleles were observed in msp-1 with 6 alleles for K1, 3 alleles for MAD20 and 1 allele for RO33. In msp-2, 19 individual alleles were detected with 10 alleles for FC27 and 9 alleles for 3D7. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI: 2.87- 3.46). The heterozygosity indices were 0.43 and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density.Conclusions: The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia, suggesting that both, endemicity level and malaria transmission remain high and that strengthened control efforts are needed in Ethiopia.


2020 ◽  
Author(s):  
Abdulhakim Abamecha ◽  
Hassan El-Abid ◽  
Daniel Yilma ◽  
Wondimagegn Addisu ◽  
Achim Ibenthal ◽  
...  

Abstract Background Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of P. falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. This study investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia.Methods A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged six months to sixty years, who visited the health facilities during study evaluating the efficacy of artemether-lumefantrine from September-December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis.Results Of 80 qPCR-positive samples analysed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95 % and 98.8%, respectively. Allelic variation of 90% (72/80) for msp-1 and 86.2% (69/80) for msp-2 were observed. K1 was the predominant msp-1 allelic family detected in 20.8% (15/72) of the samples followed by MAD20 and RO33. Within msp-2, allelic family FC27 showed a higher frequency (26.1%) compared to IC/3D7 (15.9%). Ten different alleles were observed in msp-1 with 6 alleles for K1, 3 alleles for MAD20 and 1 allele for RO33. In msp-2, 19 individual alleles were detected with 10 alleles for FC27 and 9 alleles for 3D7. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI: 2.87- 3.46). The heterozygosity indices were 0.43 and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density.Conclusions The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia, suggesting that both endemicity level and malaria transmission remain high and that strengthened control efforts are needed in Ethiopia.


2020 ◽  
Author(s):  
Abdulhakim Abamecha ◽  
Hassan El-Abid ◽  
Daniel Yilma ◽  
Wondimagegn Addisu ◽  
Achim Ibenthal ◽  
...  

Abstract Background: Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of Plasmodium falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. In this study, we investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia.Methods: A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged six months to sixty years, who visited the health facilities during the evaluation of a therapeutic efficacy study of arthemeter-lumefantrine from September-December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis.Results: Of 80 qPCR-positive samples analyzed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95 % and 98.8%, respectively. A total of 29 msp alleles (10 for msp-1and 19 for msp-2) were detected. In msp-1, K1 was the predominant allelic family detected in 47.7% (42/88) of the samples followed by Mad20 and RO33. For msp-2, the frequency of FC27 and IC/3D7 were 77% (57/74) and 76% (56/74), respectively. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI: 2.87- 3.46). The heterozygosity index was 0.43, and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density.Conclusions: The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia; reflecting both the endemicity level and malaria transmission remained high and more strengthened control efforts are needed in Ethiopia.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
YH Kim ◽  
JA Ryuk ◽  
BS Ko ◽  
JW Lee ◽  
SE Oh ◽  
...  

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
K Shinde ◽  
V Shinde ◽  
J Kurane ◽  
A Harsulkar ◽  
K Mahadik

Sign in / Sign up

Export Citation Format

Share Document