allelic family
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 10)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Muzafar Shah ◽  
Ibrar Ullah ◽  
Sahib Gul Afridi ◽  
Muhammad Israr ◽  
Asifullah Khan ◽  
...  

Plasmodium falciparum, the main causative agent of malaria is an important public health vector in Khyber Pakhtunkhwa, Pakistan. Identification of the genetic diversity of malaria parasites can inform the intensity of transmission and identify potential deficiencies in malaria control programs. The aim of this study was to investigate the genetic diversity, allele frequencies and multiplicity of infection (MOI) of P. falciparum in Khyber Pakhtunkhwa, Pakistan. Methods: A total of 85 isolates from patients presenting to the local health centers with P. falciparum species were collected from 2017 to 2019. Parasite DNA was extracted from a total of 200 micro litter whole blood per patient using the Qiagen DNA extraction kit according to manufactures instructions. The polymorphic region of msp-1, msp-2 and glurp loci were genotyped by using nested polymerase chain reactions followed by gel electrophoresis for fragment analysis. Results: Genetic diversity and allelic frequencies of msp-1, msp-2 and glurp were identified in 85 blood samples. A total of 62 msp alleles were detected in which 30 for msp-1 and 32 for msp-2. For msp-1 the successful amplification occurred in (75/85) 88.23% isolates for msp-1, 78.9% (67/85) for msp-2 and 70% (60/85) for glurp. For msp-1, the K1 allelic family was predominant at 66.66% (50/75), followed by RO33 and MAD20. The frequency of samples having only K1, MAD20 and RO33 were 21.34% (16/75), 8% (6/75) and 10.67% (8/75) respectively. In msp-2, the FC27 allelic family was the most abundant with 70.14% (47/67) compared to 3D7 with 67.16% (45/67). Nine glurp RII region genotypes were identified. The overall mean multiplicity of infection was 2.6 with1.8 and 1.4 for msp-1 and msp-2 respectively while for glurp RII genes (MOI=1.03). There was no significant association between multiplicity of infection and age group (Spearman rank coefficient = 0.050; P = 0.6). There was significant correlation between MOI and parasite density for msp-2 allelic family. Conclusion: Our study showed high genetic diversity and allelic frequency with multiple clones of msp-1, msp-2 and glurp in P. falciparum isolates from malaria patients in Khyber Pakhtunkhwa Pakistan. In the present study the genotype data provided the valuable information which is essential for monitoring the impact of malaria eradication efforts in this region.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hussein Mohammed ◽  
Ashenafi Assefa ◽  
Melkie Chernet ◽  
Yonas Wuletaw ◽  
Robert J. Commons

AbstractBackgroundThe characterization of parasite populations circulating in malaria endemic areas is necessary to evaluate the success of ongoing interventions and malaria control strategies. This study was designed to investigate the genetic diversity ofPlasmodium falciparumisolates from the semi-arid area in North East Ethiopia, using the highly polymorphic merozoite surface protein-2 (msp2) gene as a molecular marker.MethodsDried blood spot isolates were collected from patients withP. falciparuminfection between September 2014 and January 2015 from Melka-Werer, North East Ethiopia. Parasite DNA was extracted and genotyped using allele-specific nested polymerase chain reactions formsp2.Results52 isolates were collected withmsp2identified in 41 (78.8%) isolates. Allele typing of themsp2gene detected the 3D7/IC allelic family in 54% and FC27 allelic family in 46%. A total of 14 differentmsp2genotypes were detected including 6 belonging to the 3D7/IC family and 8 to the FC27 family. Forty percent of isolates had multiple genotypes and the overall mean multiplicity of infections (MOI) was 1.2 (95%CI 0.96–1.42). The heterozygosity index was 0.50 for themsp2locus. There was no difference in MOI between age groups. A negative correlation between parasite density and multiplicity of infection was found (p = 0.02).ConclusionPlasmodium falciparumisolates from the semi-arid area of North East Ethiopia are mainly monoclonal with low MOI and limited genetic diversity in the study population.


2021 ◽  
Author(s):  
Hussein Mohammed Ali ◽  
Ashenafi Assefa ◽  
Melkie Chernet ◽  
Yonas Wulataw ◽  
Robert J Commons

Abstract Background The characterization of parasite populations circulating in malaria endemic areas is necessary to evaluate the success of ongoing interventions and malaria control strategies. This study was designed to investigate the genetic diversity of Plasmodium falciparum isolates from the semi-arid area in North East Ethiopia, using the highly polymorphic merozoite surface protein-2 (msp2) gene as a molecular marker. Methods Dried blood spot isolates were collected from patients with P. falciparum infection between September 2014 and January 2015 from Melka-Werer, North East Ethiopia. Parasite DNA was extracted and genotyped using allele-specific nested polymerase chain reactions for msp2. Results 52 isolates were collected with msp2 identified in 41 (78.8%) isolates. Allele typing of the msp2 gene detected the 3D7/IC allelic family in 54% and FC27 allelic family in 46%. A total of 14 different msp2 genotypes were detected including 6 belonging to the 3D7/IC family and 8 to the FC27 family. Forty percent of isolates had multiple genotypes and the overall mean multiplicity of infections (MOI) was 1.2 (95%CI 0.96-1.42). The heterozygosity index was 0.50 for the msp2 locus. There was no difference in MOI between age groups. A negative correlation between parasite density and multiplicity of infection was found (p = 0.02).Conclusion Plasmodium falciparum isolates from the semi-arid area of North East Ethiopia are mainly monoclonal with low MOI and limited genetic diversity in the study population.


2020 ◽  
Author(s):  
Hussein Mohammed Ali ◽  
Ashenafi Assefa ◽  
Melkie Chernet ◽  
Yonas Wulataw ◽  
Robert J Commons

Abstract Background: The characterization of parasite populations circulating in malaria endemic areas is necessary to evaluate the success of ongoing interventions and malaria control strategies. This study was designed to investigate the genetic diversity of Plasmodium falciparum isolates from the semi-arid area in North East Ethiopia, using the highly polymorphic merozoite surface protein-2 (msp2) gene as a molecular marker. Methods: Dried blood spot isolates were collected from patients with Plasmodium falciparum infection between September 2014 and January 2015 from Melka-Werer, North East Ethiopia. Parasite DNA was extracted and genotyped using allele-specific nested polymerase chain reactions for msp2. Results: 52 isolates were collected with msp2 identified in 41 (78.8%) isolates. Allele typing of the msp2 gene detected the 3D7/IC allelic family in 54% and FC27 allelic family in 46%. A total of 14 different msp2 genotypes were detected including 6 belonging to the 3D7/IC family and 8 to the FC27 family. Forty percent of isolates had multiple genotypes and the overall mean multiplicity of infections (MOI) was 1.2 (95%CI 0.96-1.42). The heterozygosity index was 0.50 for the msp2 locus. There was no difference in MOI between age groups. A negative correlation between parasite density and multiplicity of infection was found (p = 0.02).Conclusion: P. falciparum isolates from the semi-arid area of North East Ethiopia are mainly monoclonal with low MOI and limited genetic diversity in the study population.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Bui Van Long ◽  
Genevieve Allen ◽  
Melanie Brauny ◽  
Le Thi Kieu Linh ◽  
Srinivas Reddy Pallerla ◽  
...  

Abstract Background While the World Health Organization (WHO) Southeast Asia region has the second highest incidence of malaria worldwide, malaria in Vietnam is focal to few provinces, where delayed parasite clearance to anti-malarial drugs is documented. This study aims to understand Plasmodium species distribution and the genetic diversity of msp1 and msp2 of parasite populations using molecular tools. Methods A total of 222 clinical isolates from individuals with uncomplicated malaria were subjected to Plasmodium species identification by nested real-time PCR. 166 isolates positive for Plasmodium falciparum mono infections were further genotyped for msp1 (MAD20, K1, and RO33), and msp2 allelic families (3D7 and FC27). Amplicons were resolved through capillary electrophoresis in the QIAxcel Advanced system. Results Mono-infections were high and with 75% P. falciparum, 14% Plasmodium vivax and 9% P. falciparum/P. vivax co-infections, with less than 1% Plasmodium malariae identified. For msp1, MAD20 was the most prevalent (99%), followed by K1 (46%) allelic family, with no sample testing positive for RO33 (0%). For msp2, 3D7 allelic family was predominant (97%), followed by FC27 (10%). The multiplicity of infection of msp1 and msp2 was 2.6 and 1.1, respectively, and the mean overall multiplicity of infection was 3.7, with the total number of alleles ranging from 1 to 7. Conclusions Given the increasing importance of antimalarial drugs in the region, the genetic diversity of P. falciparum msp1 and msp2 should be regularly monitored with respect to treatment outcomes and/or efficacy studies in regions, where there are ongoing changes in the malaria epidemiology.


2020 ◽  
Author(s):  
Abdulhakim Abamecha ◽  
Hassan El-Abid ◽  
Daniel Yilma ◽  
Wondimagegn Addisu ◽  
Achim Ibenthal ◽  
...  

Abstract Background Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of P. falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. This study investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia.Methods A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged six months to sixty years, who visited the health facilities during study evaluating the efficacy of artemether-lumefantrine from September-December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis.Results Of 80 qPCR-positive samples analysed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95 % and 98.8%, respectively. Allelic variation of 90% (72/80) for msp-1 and 86.2% (69/80) for msp-2 were observed. K1 was the predominant msp-1 allelic family detected in 20.8% (15/72) of the samples followed by MAD20 and RO33. Within msp-2, allelic family FC27 showed a higher frequency (26.1%) compared to IC/3D7 (15.9%). Ten different alleles were observed in msp-1 with 6 alleles for K1, 3 alleles for MAD20 and 1 allele for RO33. In msp-2, 19 individual alleles were detected with 10 alleles for FC27 and 9 alleles for 3D7. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI: 2.87- 3.46). The heterozygosity indices were 0.43 and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density.Conclusions The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia, suggesting that both endemicity level and malaria transmission remain high and that strengthened control efforts are needed in Ethiopia.


2020 ◽  
Author(s):  
Abdulhakim Abamecha ◽  
Hassan El-Abid ◽  
Daniel Yilma ◽  
Wondimagegn Addisu ◽  
Achim Ibenthal ◽  
...  

Abstract Background: Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of Plasmodium falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. In this study, we investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia.Methods: A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged six months to sixty years, who visited the health facilities during study evaluating the efficacy of arthemeter-lumefantrine from September-December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis.Results: Of 80 qPCR-positive samples analyzed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95 % and 98.8%, respectively. Allelic variation of 90% (72/80) for msp-1 and 86.2% (69/80) for msp-2 were observed. K1 was the predominant msp-1 allelic family detected in 20.8% (15/72) of the samples followed by MAD20 and RO33. Within msp-2, allelic family FC27 showed a higher frequency (26.1%) compared to IC/3D7 (15.9%). Ten different alleles were observed in msp-1 with 6 alleles for K1, 3 alleles for MAD20 and 1 allele for RO33. In msp-2, 19 individual alleles were detected with 10 alleles for FC27 and 9 alleles for 3D7. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI: 2.87- 3.46). The heterozygosity indices were 0.43 and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density.Conclusions: The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia, suggesting that both, endemicity level and malaria transmission remain high and that strengthened control efforts are needed in Ethiopia.


Author(s):  
Salif Sombié ◽  
Samuel Sindié Sermé ◽  
Aïssatou Diawara ◽  
Mame Massar Dieng ◽  
Amidou Diarra ◽  
...  

Aim: The present study aimed to evaluate the Plasmodium falciparum genetic diversity according to the host hemoglobin and G6PD genetic variants during the course of malaria in infected children aged from 2 to 10 years and living in endemic area in Burkina Faso. Study Design: The study was designed as a longitudinal follow up conducted between May 2015 and February 2016 in Banfora health district, Burkina Faso. Methodology: We included 136 subjects (73 males and 63 females; age range from 2-10 years). Blood thick and thin film was done by capillary blood. Venous blood was collected for DNA extraction. Malaria diagnosis was done by microscopy. Human and parasite DNA were extracted based on Qiagen kit procedure. Then, hemoglobin and G6PD were genotyped by RLFP-PCR while the msp1, msp2 and eba175 genes were typed by a nested PCR. All PCR products were analyzed by electrophoresis on a 1.5-2% agarose gel and alleles categorized according to the molecular weight. Results: The prevalence of hemoglobin type was 19.11% for abnormal hemoglobin and 80.9% for normal hemoglobin carriage. The prevalence of G6PD type was 91.18% for normal and 8.82% for G6PD deficiency carriage, respectively. The prevalence of msp1 allelic families was 81.60%, 80.80% and 67.20% for k1, ro33 and mad20 respectively while for msp2 gene, fc27 and 3D7 allelic family the prevalence was 70.53% and 69.64% respectively. The eba175 allelic families’ distribution showed 77.31% and 40.21% for fcr3 and Camp respectively. There was no difference in multiplicity of infection (MOI) according to hemoglobin genotypes and G6PD types. We found that k1 was the predominant allelic family of msp1 in normal hemoglobin genotype (AA) and normal G6PD type. The mixed infection of eba175 was statistically higher in abnormal hemoglobin (p=0.04). There was no statistical difference between fcr3 and camp prevalence excepted in G6PD deficient type. The polymorphism results showed that the prevalence of 450 bp in fc27 was statistically significantly higher in normal hemoglobin variant carriers (AA) than abnormal hemoglobin carriers (p=2.10 -4)). However, the prevalence of 350 bp in fc27 was statistically higher in normal G6PD than deficient G6PD carriers (p=0.034). Conclusion: Our result showed that the distribution of msp1 and eba75 polymorphism could be influenced by hemoglobin and G6PD variants. These results suggest that hemoglobin and G6PD could influence P. falciparum genetic diversity.


2019 ◽  
Vol 19 (3) ◽  
pp. 2446-2456
Author(s):  
Tolla Ndiaye ◽  
Mouhamad Sy ◽  
Amy Gaye ◽  
Daouda Ndiaye

Introduction: Despite a significant decline in Senegal, malaria remains a burden in various parts of the country. Assessment of multiplicity of Plasmodium falciparum infection and genetic diversity of parasites population could help in monitoring of malaria control.Objective: To assess genetic diversity and multiplicity of infection in P. falciparum isolates from three areas in Senegal with different malaria transmissions. Methods: 136 blood samples were collected from patients with uncomplicated P. falciparum malaria in Pikine, Kedougou and Thies. Polymorphic loci of msp1 and 2 (Merozoite surface protein-1 and 2) genes were amplified by nested PCR.Results: For msp1gene, K1 allelic family was predominant with frequency of 71%. Concerning msp2 gene, IC3D7 allelic family was the most represented with frequency of 83%. Multiclonal isolates found were 36% and 31% for msp1et msp2 genes respectively. The MOI found in all areas was 2.56 and was statistically different between areas (P=0.024). Low to intermediate genetic diversity were found with heterozygosity range (He=0,394-0,637) and low genetic differentiation (Fst msp1= 0.011; Fst msp2= 0.017) were observed between P. falciparum population within the country.Conclusion: Low to moderate genetic diversity of P.falciparum strains and MOI disparities were found in Senegal.Keywords: Senegal, MOI, Genetic diversity, msp1, msp2.


Sign in / Sign up

Export Citation Format

Share Document