Genetic diversity and gene flow of humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu: Inferred malaria dispersal and implications for malaria control

Acta Tropica ◽  
2007 ◽  
Vol 103 (2) ◽  
pp. 102-107 ◽  
Author(s):  
J.K. Lum ◽  
A. Kaneko ◽  
G. Taleo ◽  
M. Amos ◽  
D.M. Reiff
2017 ◽  
Author(s):  
Priscila T. Rodrigues ◽  
Hugo O. Valdivia ◽  
Thais C. de Oliveira ◽  
João Marcelo P. Alves ◽  
Ana Maria R. C. Duarte ◽  
...  

AbstractBackgroundThe Americas were the last continent to be settled by modern humans, but how and when human malaria parasites arrived in the New World is uncertain. Here, we apply phylogenetic analysis and coalescent-based gene flow modeling to a global collection of Plasmodium falciparum and P. vivax mitogenomes to infer the demographic history and geographic origins of malaria parasites circulating in the Americas. Importantly, we examine P. vivax mitogenomes from previously unsampled forest-covered sites along the Atlantic Coast of Brazil, including the vivax-like species P. simium that locally infects platyrrhini monkeys.ResultsThe best-supported gene flow models are consistent with migration of both malaria parasites from Africa and South Asia to the New World, with no genetic signature of a population bottleneck upon parasite's arrival in the Americas. We found evidence of additional gene flow from Melanesia in P. vivax (but not P. falciparum) mitogenomes from the Americas and speculate that some P. vivax lineages might have arrived with the Australasian peoples who contributed genes to Native Americans in pre-Columbian times. Mitochondrial haplotypes characterized in P. simium from monkeys from the Atlantic Forest are shared by local humans. These vivax-like lineages have not spread to the Amazon Basin, are much less diverse than P. vivax circulating elsewhere in Brazil, and show no close genetic relatedness with P. vivax populations from other continents.ConclusionsEnslaved peoples brought from a wide variety of African locations were major carriers of P. falciparum mitochondrial lineages into the Americas, but additional human migration waves are likely to have contributed to the extensive genetic diversity of present-day New World populations of P. vivax. The reduced genetic diversity of vivax-like monkey parasites, compared with human P. vivax from across this country, argues for a recent human-to-monkey transfer of these lineages in the Atlantic Forest of Brazil.Author summaryMalaria is currently endemic to the Americas, with over 400,000 laboratory-confirmed infections reported annually, but how and when human malaria parasites entered this continent remains largely unknown. To determine the geographic origins of malaria parasites currently circulating in the Americas, we examined a global collection of Plasmodium falciparum and P. vivax mitochondrial genomes, including those from understudied isolates of P. vivax and P. simium, a vivax-like species that infect platyrrhini monkeys, from the Atlantic Forest of Brazil. We found evidence of significant historical migration to the New World of malaria parasites from Africa and, to a lesser extent, South Asia, with further genetic contribution of Melanesian lineages to South American P. vivax populations. Importantly, mitochondrial haplotypes of P. simium are shared by monkeys and humans from the Atlantic Forest, most likely as a result of a recent human-to-monkey transfer. Interestingly, these potentially zoonotic lineages are not found in the Amazon Basin, the main malaria-endemic area in the Americas. We conclude that enslaved Africans were the main carriers of P. falciparum mitochondrial lineages into the Americas, whereas additional migration waves of Australasian peoples and parasites may have contributed to the genetic makeup of present-day New World populations of P. vivax.


2020 ◽  
Author(s):  
Abdulhakim Abamecha ◽  
Hassan El-Abid ◽  
Daniel Yilma ◽  
Wondimagegn Addisu ◽  
Achim Ibenthal ◽  
...  

Abstract Background: Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of Plasmodium falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. In this study, we investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia.Methods: A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged six months to sixty years, who visited the health facilities during study evaluating the efficacy of arthemeter-lumefantrine from September-December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis.Results: Of 80 qPCR-positive samples analyzed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95 % and 98.8%, respectively. Allelic variation of 90% (72/80) for msp-1 and 86.2% (69/80) for msp-2 were observed. K1 was the predominant msp-1 allelic family detected in 20.8% (15/72) of the samples followed by MAD20 and RO33. Within msp-2, allelic family FC27 showed a higher frequency (26.1%) compared to IC/3D7 (15.9%). Ten different alleles were observed in msp-1 with 6 alleles for K1, 3 alleles for MAD20 and 1 allele for RO33. In msp-2, 19 individual alleles were detected with 10 alleles for FC27 and 9 alleles for 3D7. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI: 2.87- 3.46). The heterozygosity indices were 0.43 and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density.Conclusions: The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia, suggesting that both, endemicity level and malaria transmission remain high and that strengthened control efforts are needed in Ethiopia.


2020 ◽  
Author(s):  
Abdulhakim Abamecha ◽  
Hassan El-Abid ◽  
Daniel Yilma ◽  
Wondimagegn Addisu ◽  
Achim Ibenthal ◽  
...  

Abstract Background Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of P. falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. This study investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia.Methods A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged six months to sixty years, who visited the health facilities during study evaluating the efficacy of artemether-lumefantrine from September-December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis.Results Of 80 qPCR-positive samples analysed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95 % and 98.8%, respectively. Allelic variation of 90% (72/80) for msp-1 and 86.2% (69/80) for msp-2 were observed. K1 was the predominant msp-1 allelic family detected in 20.8% (15/72) of the samples followed by MAD20 and RO33. Within msp-2, allelic family FC27 showed a higher frequency (26.1%) compared to IC/3D7 (15.9%). Ten different alleles were observed in msp-1 with 6 alleles for K1, 3 alleles for MAD20 and 1 allele for RO33. In msp-2, 19 individual alleles were detected with 10 alleles for FC27 and 9 alleles for 3D7. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI: 2.87- 3.46). The heterozygosity indices were 0.43 and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density.Conclusions The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia, suggesting that both endemicity level and malaria transmission remain high and that strengthened control efforts are needed in Ethiopia.


2020 ◽  
Author(s):  
Abdulhakim Abamecha ◽  
Hassan El-Abid ◽  
Daniel Yilma ◽  
Wondimagegn Addisu ◽  
Achim Ibenthal ◽  
...  

Abstract Background: Genetic diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity of Plasmodium falciparum strains can be used to assess intensity of parasite transmission and identify potential deficiencies in malaria control programmes, which provides vital information to evaluating malaria elimination efforts. In this study, we investigated the P. falciparum genetic diversity and genotype multiplicity of infection in parasite isolates from cases with uncomplicated P. falciparum malaria in Southwest Ethiopia.Methods: A total of 80 P. falciparum microscopy and qPCR positive blood samples were collected from study participants aged six months to sixty years, who visited the health facilities during the evaluation of a therapeutic efficacy study of arthemeter-lumefantrine from September-December, 2017. Polymorphic regions of the msp-1 and msp-2 were genotyped by nested polymerase chain reactions (nPCR) followed by gel electrophoresis for fragment analysis.Results: Of 80 qPCR-positive samples analyzed for polymorphisms on msp-1 and msp-2 genes, the efficiency of msp-1 and msp-2 gene amplification reactions with family-specific primers were 95 % and 98.8%, respectively. A total of 29 msp alleles (10 for msp-1and 19 for msp-2) were detected. In msp-1, K1 was the predominant allelic family detected in 47.7% (42/88) of the samples followed by Mad20 and RO33. For msp-2, the frequency of FC27 and IC/3D7 were 77% (57/74) and 76% (56/74), respectively. Eighty percent (80%) of isolates had multiple genotypes and the overall mean multiplicity of infection was 3.2 (95% CI: 2.87- 3.46). The heterozygosity index was 0.43, and 0.85 for msp-1 and msp-2, respectively. There was no significant association between multiplicity of infection and age or parasite density.Conclusions: The study revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations in Chewaka district, Ethiopia; reflecting both the endemicity level and malaria transmission remained high and more strengthened control efforts are needed in Ethiopia.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Inbreeding is reduced and genetic diversity enhanced when a small isolated inbred population is crossed to another unrelated population. Crossing can have beneficial or harmful effects on fitness, but beneficial effects predominate, and the risks of harmful ones (outbreeding depression) can be predicted and avoided. For crosses with a low risk of outbreeding depression, there are large and consistent benefits on fitness that persist across generations in outbreeding species. Benefits are greater in species that naturally outbreed than those that inbreed, and increase with the difference in inbreeding coefficient between crossed and inbred populations in mothers and zygotes. However, benefits are similar across invertebrates, vertebrates and plants. There are also important benefits for evolutionary potential of crossing between populations.


Author(s):  
Alba Rey-Iglesia ◽  
Philippe Gaubert ◽  
Gonçalo Espregueira Themudo ◽  
Rosa Pires ◽  
Constanza De La Fuente ◽  
...  

Abstract The Mediterranean monk seal Monachus monachus is one of the most threatened marine mammals, with only 600–700 individuals restricted to three populations off the coast of Western Sahara and Madeira (North Atlantic) and between Greece and Turkey (eastern Mediterranean). Its original range was from the Black Sea (eastern Mediterranean) to Gambia (western African coast), but was drastically reduced by commercial hunting and human persecution since the early stages of marine exploitation. We here analyse 42 mitogenomes of Mediterranean monk seals, from across their present and historical geographic ranges to assess the species population dynamics over time. Our data show a decrease in genetic diversity in the last 200 years. Extant individuals presented an almost four-fold reduction in genetic diversity when compared to historical specimens. We also detect, for the first time, a clear segregation between the two North Atlantic populations, Madeira and Cabo Blanco, regardless of their geographical proximity. Moreover, we show the presence of historical gene-flow between the two water basins, the Atlantic Ocean and the Mediterranean Sea, and the presence of at least one extinct maternal lineage in the Mediterranean. Our work demonstrates the advantages of using full mitogenomes in phylogeographic and conservation genomic studies of threatened species.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fehintola V. Ajogbasile ◽  
Adeyemi T. Kayode ◽  
Paul E. Oluniyi ◽  
Kazeem O. Akano ◽  
Jessica N. Uwanibe ◽  
...  

Abstract Background Malaria remains a public health burden especially in Nigeria. To develop new malaria control and elimination strategies or refine existing ones, understanding parasite population diversity and transmission patterns is crucial. Methods In this study, characterization of the parasite diversity and structure of Plasmodium falciparum isolates from 633 dried blood spot samples in Nigeria was carried out using 12 microsatellite loci of P. falciparum. These microsatellite loci were amplified via semi-nested polymerase chain reaction (PCR) and fragments were analysed using population genetic tools. Results Estimates of parasite genetic diversity, such as mean number of different alleles (13.52), effective alleles (7.13), allelic richness (11.15) and expected heterozygosity (0.804), were high. Overall linkage disequilibrium was weak (0.006, P < 0.001). Parasite population structure was low (Fst: 0.008–0.105, AMOVA: 0.039). Conclusion The high level of parasite genetic diversity and low population structuring in this study suggests that parasite populations circulating in Nigeria are homogenous. However, higher resolution methods, such as the 24 SNP barcode and whole genome sequencing, may capture more specific parasite genetic signatures circulating in the country. The results obtained can be used as a baseline for parasite genetic diversity and structure, aiding in the formulation of appropriate therapeutic and control strategies in Nigeria.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Vicente Urbano Nsue Ndong Nchama ◽  
Ali Hamad Said ◽  
Ali Mtoro ◽  
Gertrudis Owono Bidjimi ◽  
Marta Alene Owono ◽  
...  

Abstract Background Extensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination. Malaria vaccines offer hope for reducing the burden to zero. Three phase 1/2 studies have been conducted successfully on Bioko Island to evaluate the safety and efficacy of whole Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccines. A large, pivotal trial of the safety and efficacy of the radiation-attenuated Sanaria® PfSPZ Vaccine against P. falciparum is planned for 2022. This study assessed the incidence of malaria at the phase 3 study site and characterized the influence of socio-demographic factors on the burden of malaria to guide trial design. Methods A cohort of 240 randomly selected individuals aged 6 months to 45 years from selected areas of North Bioko Province, Bioko Island, was followed for 24 weeks after clearance of parasitaemia. Assessment of clinical presentation consistent with malaria and thick blood smears were performed every 2 weeks. Incidence of first and multiple malaria infections per person-time of follow-up was estimated, compared between age groups, and examined for associated socio-demographic risk factors. Results There were 58 malaria infection episodes observed during the follow up period, including 47 first and 11 repeat infections. The incidence of malaria was 0.25 [95% CI (0.19, 0.32)] and of first malaria was 0.23 [95% CI (0.17, 0.30)] per person per 24 weeks (0.22 in 6–59-month-olds, 0.26 in 5–17-year-olds, 0.20 in 18–45-year-olds). Incidence of first malaria with symptoms was 0.13 [95% CI (0.09, 0.19)] per person per 24 weeks (0.16 in 6–59-month-olds, 0.10 in 5–17-year-olds, 0.11 in 18–45-year-olds). Multivariate assessment showed that study area, gender, malaria positivity at screening, and household socioeconomic status independently predicted the observed incidence of malaria. Conclusion Despite intensive malaria control efforts on Bioko Island, local transmission remains and is spread evenly throughout age groups. These incidence rates indicate moderate malaria transmission which may be sufficient to support future larger trials of PfSPZ Vaccine. The long-term goal is to conduct mass vaccination programmes to halt transmission and eliminate P. falciparum malaria.


Sign in / Sign up

Export Citation Format

Share Document