Unified Smith predictor for dead-time systems 1

2003 ◽  
Vol 36 (19) ◽  
pp. 83-86
Author(s):  
Qing-Chang Zhong
Author(s):  
Zakarya Omar ◽  
Xingsong Wang ◽  
Khalid Hussain ◽  
Mingxing Yang

AbstractThe typical power-assisted hip exoskeleton utilizes rotary electrohydraulic actuator to carry out strength augmentation required by many tasks such as running, lifting loads and climbing up. Nevertheless, it is difficult to precisely control it due to the inherent nonlinearity and the large dead time occurring in the output. The presence of large dead time fires undesired fluctuation in the system output. Furthermore, the risk of damaging the mechanical parts of the actuator increases as these high-frequency underdamped oscillations surpass the natural frequency of the system. In addition, system closed-loop performance is degraded and the stability of the system is unenviably affected. In this work, a Sliding Mode Controller enhanced by a Smith predictor (SMC-SP) scheme that counts for the output delay and the inherent parameter nonlinearities is presented. SMC is utilized for its robustness against the uncertainty and nonlinearity of the servo system parameters whereas the Smith predictor alleviates the dead time of the system’s states. Experimental results show smoother response of the proposed scheme regardless of the amount of the existing dead time. The response trajectories of the proposed SMC-SP versus other control methods were compared for a different predefined dead time.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1519
Author(s):  
Mikulas Huba ◽  
Pavol Bistak ◽  
Damir Vrancic ◽  
Katarina Zakova

The article reviews the results of a number of recent papers dealing with the revision of the simplest approaches to the control of first-order time-delayed systems. The concise introductory review is extended by an analysis of two discrete-time approaches to dead-time compensation control of stable, integrating, and unstable first-order dead-time processes including simple diagnostics of the model used and focusing on the possibility of simplified but reliable plant modelling. The first approach, based on the first historically known dead-time compensator (DTC) with possible dead-beat performance, is based on the reconstruction of the actual process variables and the compensation of input disturbances by an extended state observer (ESO). Such solutions play an important role both in a disturbance observer (DOB) based control and in an active disturbance rejection control (ADRC). The second approach considered comes from the Smith predictor with two degrees of freedom, which combines feedforward control with output disturbance reconstruction and compensation by the parallel plant model. It is shown that these two approaches offer advantageous properties in the case of actuator limitations, in contrast to the commonly used PID controllers. However, when applied to integrating and unstable first-order systems, the unconstrained and possibly unobservable output disturbance signal of the second solution must be eliminated from the control loop, due to the hidden structural instability of the Smith predictor-like solutions. The modified solutions, usually referred to as filtered Smith predictor (FSP), then no longer provide a disturbance signal and thus no longer fully fit into the concept of Industry 4.0, which is focused on further optimization, predictive maintenance in dynamic systems, diagnosis, fault detection and fault identification of dynamic processes and forms the basis for the digitalization of smart production. Nevertheless, the detailed analysis of the elimination of the unstable disturbance response mode is also worth mentioning in terms of other possible solutions. The application of both approaches to the control of a thermal process shows almost equivalent quality, but with different dependencies on the tuning parameters used. It is confirmed that a more detailed identification of the controlled process and the resulting higher complexity of the control algorithms does not necessarily lead to an increase in the resulting quality of the transients, which underlines the importance of the simplified plant modelling for practice.


Automatica ◽  
2012 ◽  
Vol 48 (3) ◽  
pp. 480-489 ◽  
Author(s):  
Suat Gumussoy ◽  
Wim Michiels
Keyword(s):  

Author(s):  
Mikuláš Huba ◽  
Igor Bélai

This article presents design and evaluation of filtered proportional–integral controllers and filtered Smith predictor–inspired constrained dead time compensators. Both are based on the integral plus dead time and on the first-order time delayed plant models. They are compared as for tuning simplicity, robustness and noise attenuation. Such a comparison, which presents a robustness test regarding the importance of the internal plant feedback approximation, may be carried out by performance measures built on deviations of the input and output transient responses from their ideal shapes. When combined with integral of absolute error measures of both solution types with the disturbance responses set as nearly equivalent, we can see that the filtered Smith predictor setpoint responses may be significantly faster than the filtered proportional–integral controller responses, more robust and, using higher-order filters, also sufficiently smooth. Furthermore, tuning of the possibly higher-order filters for filtered Smith predictor is simpler. Its overall design is more transparent and straightforward with respect to the control constraints, where the filtered Smith predictor requires some additional anti-windup measures.


10.5772/19258 ◽  
2011 ◽  
Author(s):  
Dennis Brandao ◽  
Nunzio Torrisi ◽  
Renato F. Fernandes Jr

2013 ◽  
Vol 367 ◽  
pp. 363-368
Author(s):  
R. Karthikeyan ◽  
C. Bhargav ◽  
Karthik Koneru ◽  
G. Syam ◽  
Shikha Tripathi

The main aim of a control system is to repress the instabilities caused by nonlinearities of the system. Dead time is considered to be one of the most significant nonlinearities of a system. Dead time compensators play a vital role in reducing the dead time effects on the processes only to a minute extent. This paper proposes a method to overcome this problem by using Enhanced Model Reference Adaptive Control (MRAC) incorporating Smith Predictor. MRAC belongs to class of adaptive servo system in which desired performance is expressed with the help of a reference model. Enhanced MRAC consists of a fuzzy logic controller which provides adaptation gain to MRAC without human interference. A dead time compensator incorporated in the enhanced MRAC solves the problem of instabilities caused by dead time to a greater extent.


Sign in / Sign up

Export Citation Format

Share Document