Identification of Parameters and Time Delays of Continuous Systems using the Genetic Algorithm

1994 ◽  
Vol 27 (8) ◽  
pp. 1573-1578 ◽  
Author(s):  
Zi-Jiang Yang ◽  
Tomohiro Hachino ◽  
Teruo Tsuji ◽  
Setsuo Sagara
1999 ◽  
Vol 9 ◽  
pp. 23-28 ◽  
Author(s):  
Chris Brown

Talking Drum is an interactive computer network music installation designed for the diffusion of cyclically repeating rhythms produced by four electronically synchronized instruments separated by distances up to 50 feet (16 m). The reverberant character of the performance space and the distance-related time-delays between stations combine with the speed and rhythms of the music to create a complex, multifocal mix that audiences explore by moving independently through the installation. The software uses Afro-Cuban musical concepts as a model for creating an interactive drum machine. It implements a simple genetic algorithm to mediate the interaction between pre-composed and improvised rhythms.


Author(s):  
Goran Simeunovic´ ◽  
Ivo Bukovsky

The paper introduces linear dynamic-order extended time-delay dynamic neural unit (DOE TmD-DNU) whose adaptation by the dynamic backpropagation learning rule is enhanced by the genetic algorithm. DOE TmD-DNU is a possible customization of novel class of artificial neurons called time-delay dynamic neural units (TmD-DNU). In standalone implementations, these artificial dynamic neural architectures can be viewed as analogies to continuous time-delay differential equations, where the equation parameters are unknown and are adaptable such as neural weights and other parameters of artificial neurons. Time delays on neural inputs of a unit and in the state feedback of a unit are also considered as unit’s adaptable neural parameters. These new neural units equipped with adaptable time delays can identify all parameters of a continuous time-delay dynamic system including unknown time delays both in the unit’s inputs as well as in its state variables. Incorporation of adaptable time delays into neural units significantly increases approximation capability of individual neural units. It results in simplification of a neural architecture and minimization of the number of neural parameters, and thus possibly in better understanding the obtained neural model. It has been shown, that stable adaptation of all parameters of TmD-DNU including time delays can be achieved by dynamic modification of backpropagation learning algorithm. However, sometimes the relatively slow convergence rate of the neural parameters and the convergence rather toward local minima of error function can be considered as drawbacks of the adaptation. This paper focuses the improvement of the backpropagation learning algorithm of TmD-DNU by the genetic algorithm and its application to heat transfer system modeling. The adaptation learning algorithm based on the simultaneous combination of dynamic backpropagation and genetic algorithm has been designed to accelerate the convergence of time-delay parameters of a neural unit and to achieve the global character of minimization of error function. The neural weights and parameters, except the time-delays, are adapted by dynamic modification of backpropagation learning algorithm, and those that represent time-delays can be adapted by the genetic algorithm. Results on system identification of an unknown system with dynamics of higher-order including unknown time delays are shown in comparison to achievements by common identification methods applied to the same system. The robust identification capabilities, the aspects of network implementation of TmD-DNU, and the prospects of their nonlinear versions, i.e. higher-order nonlinear time delay dynamic neural units (TmD-HONNU) are briefly discussed with respect to the learning technique presented in this paper.


Author(s):  
B. Mabu Sarif ◽  
D. V. Ashok Kumar ◽  
M. Venu Gopala Rao

Time delays are generally unavoidable in the designing frameworks for mechanical and electrical systems and so on.. In both continuous and discrete schemes, the existence of delay creates undesirable impacts on the under-thought which forces exacting constraints on attainable execution.The presence of delay confounds the design structure procedure also. It makes continuous systems boundless dimensional and also extends the readings in discrete systems fundamentally. As the Proportional-Integral-Derivative (PID) controller based on internal model control is essential and strong to address the vulnerabilities and aggravations of the model. But for an real industry process, they are less susceptible to noise than the PID controller.It results in just one tuning parameter which is the time constant of the closed-loop system λ, the internal model control filter factor.It additionally gives a decent answer for the procedure with huge time delays. The design of the PID controller based on the internal model control, with approximation of time delay using Pade’ and Taylor’s series is depicted in this paper. The first order filter used in the design provides good set-point tracking along with disturbance rejection.


Sign in / Sign up

Export Citation Format

Share Document