A Linear-Quadratic-Gaussian Control Algorithm for Sulphide Ore Grinding

1983 ◽  
Vol 16 (15) ◽  
pp. 199-205
Author(s):  
R. Ylinen ◽  
T. Iivarinen ◽  
A.J. Niemi
Automatica ◽  
1987 ◽  
Vol 23 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Raimo Ylinen ◽  
Antti J. Niemi ◽  
Timo Iivarinen

Author(s):  
J-H Kim ◽  
Y-H Kim

The present study considers the motion control of a cruise ship by using active stabilizing fins. One or two pairs of stabilizing fins are equipped to reduce the roll and/or pitch motions of the cruise ship. Each fin is controlled by algorithms based on proportional–integral–derivative (PID) and linear quadratic Gaussian (LQG) control. Numerical analysis of the wave-induced motion of a cruise ship with stabilizing fins is carried out by using the time-domain ship motion program which has been developed through this study. The resultant motion response as the performance of each controller is compared between different control algorithms. Based on the present simulation results, the stabilizing fin can be considered a good instrument to reduce pitch motion as well as roll motion of the present cruise ship model. The present results show that the PID control algorithm, a simple but practical algorithm, can be an appropriate method to reduce the roll motion in a moderate sea state, while the LQG control algorithm shows good performance in reducing not only the roll motion but also the coupled roll and pitch motions simultaneously in all of environmental conditions considered.


In this work, an attempt has been made to identify the appropriate parameters of Permanent Magnet Direct Current (PMDC) motor for infusion pump. PMDC motor plays important role in medical devices. In this, selection of parameters such as rotor inertia, armature resistance, armature inductance and back electro motive force constant is crucial that help to achieve the required speed. The proposed work uses PID controller (Proportional Integral Derivative) and LQG (Linear-Quadratic Gaussian) control algorithm to evaluate the parameters for transient response of the PMDC motor. It is demonstrated that the chosen parameters are able to reach the required speed with quick rise time by 0.691 seconds by employing LQG.


Sign in / Sign up

Export Citation Format

Share Document