Synthesis of third-order contactor control systems

1960 ◽  
Vol 1 (1) ◽  
pp. 400-407 ◽  
Author(s):  
I. Flügge-Lotz
Keyword(s):  
2003 ◽  
Vol 40 (1) ◽  
pp. 36-44
Author(s):  
Xiaogen Yin ◽  
Y. J. Cao

Chua's oscillator is a simple autonomous third-order nonlinear circuit with a rich variety of dynamical behaviour. This paper presents a simple approach to synchronisation of Chua's oscillators using a state observer in control theory, which can be used as an interesting example for educational purposes in control systems, showing the students a simple way of coping with chaotic dynamics.


2005 ◽  
Vol 18 (3) ◽  
pp. 379-394
Author(s):  
Radu-Emil Precup ◽  
Stefan Preitl

This paper presents control solutions dedicated to a class of controlled plants widely used in mechatronics systems, characterized by simplified mathematical models of second-order and third-order plus integral type. The conventional control solution is focused on the Extended Symmetrical Optimum method proposed by the authors in 1996. There are proposed six fuzzy control solutions employing PI-fuzzy controllers. These solutions are based on the approximate equivalence in certain conditions between fuzzy control systems and linear ones, on the application of the modal equivalence principle, and on the transfer of results from the continuous-time conventional solution to the fuzzy solutions via a discrete-time expression of the controller where Prof. Milic R. Stojic's book [1] is used. There is performed the sensitivity analysis of the fuzzy control systems with respect to the parametric variations of the controlled plant, which enables the development of the fuzzy controllers. In addition, the paper presents aspects concerning Iterative Feedback Tuning and Iterative Learning Control in the framework of fuzzy control systems. The theoretical results are validated by considering a real-world application.


Author(s):  
O. Derets ◽  
O. Sadovoi ◽  
H. Derets

The relevance of the work is due to the growing requirements for the dynamic characteristics of electric drives. In particular, together with the requirements of ensuring high accuracy and maximum at given speed limits, a typical task of designing such systems is the mandatory formation of transition diagrams in the form of monotonic time functions. The purpose of this study is to develop an adaptive algorithm for the synthesis of the third-order sliding mode control systems based on the method of N-i switching. Changing the shape of transient trajectory depends on the magnitude of the movement, which requires adaptation of the settings of the control system of the electric drive to the features of the current positioning mode. On the basis of the N-i switching method, an algorithm for synthesizing the parameters of a re-lay control system with cascade-subordinated structure, ensures non-oscillatory initiation of a sliding mode at various positioning modes, has been created. It is constructed by integrating the results of a number of previous works, in which the synthesis of relay control systems based on the analysis of the roots of the sliding equation of the position regulator is performed. This algorithm cannot be formally considered as an optimization tool due to the incompatibility of this problem with the aperiodization taken as the purpose, which comes about for certain forms of transient trajectories. But for such cases, the loss of performance relatively optimal one is negligible. Thus, the result of the application of the proposed algorithm in most practically significant cases is an optimal third-order system with aperiodic entry into the sliding mode. When controlling the electric drive, such a system will ensure the monotonous nature of the movement of the working body of the electromechanical system. The developed block diagram is focused on the practical implementation of the algorithm by the software of controllers of precision electric drives.


Sign in / Sign up

Export Citation Format

Share Document