scholarly journals 8. Human Factors Implications of Unmanned Aircraft Accidents: Flight-Control Problems

Author(s):  
K WILLIAMS
2018 ◽  
Vol 161 ◽  
pp. 03021 ◽  
Author(s):  
Vinh Nguyen ◽  
Oksana Solenaya ◽  
Petr Smirnov

Adding an onboard manipulation system to an unmanned aerial vehicle (UAV) significantly complicates framework, functioning algorithms, and leads to an increase in overall dimensions. The physical interaction of the manipulator with objects influences to unstabilization of UAV, which in turn leads to difficulties in positioning the UAV and reduces the accuracy of gripper motion. In addition, the physical interaction of the manipulator with objects requires increased power resources of UAVs. The article analyzes modern research of UAVs with a manipulator, including flight control problems, avoidance of contact with the earth, surrounding space, as well as manipulations with the captured object. On the basis of the analysis, a list of new problems arising in the physical interaction of UAVs with objects through an embedded manipulator is formulated.


Author(s):  
Muhammad M. Mahmood ◽  
Md S. Chowdhury ◽  
Rizwan Ihsan ◽  
Umar M. Yousaf ◽  
Mohamed W. Afifi ◽  
...  

This paper provides an overview of the first participation of the design developed by the undergraduate students of American University of Sharjah to meet the requirements laid forth in the 2008 Association for Unmanned Vehicle Systems International (AUVSI) Student UAS competition. The overall objective of the competition is to fly autonomously over a GPS waypoint defined route and also to identify and locate ground based targets within a confined area. To meet the objectives an unmanned aircraft is equipped with autonomous functionality and aerial imaging system. A ground station and supportive software to keep track of the aircraft routine and log the raw data gained from the flight is also designed. Achieving complete success depends upon mission elements which include autonomous take-off and landing, autonomous control and waypoint navigation. The onboard equipment used was a flight control computer network, IMU, GPS, an air data system and a camera. Additionally, safety features such as manual override was also installed. Presented in this report are aircraft design and testing, the processes involved in accomplishing the goal, and the results and achievements.


Author(s):  
Matthew D. Dorn

To help prevent maintenance-related aircraft accidents the complex factors behind previous accidents must be understood. Maintenance-related aircraft accidents were studied to determine the effects of maintenance human factors. A taxonomy of causal factors was developed and used to classify the causes of 101 military and civilian accidents and to determine the frequency of occurrence for each factor. The taxonomy identifies elements, such as people and hardware, interfaces between elements (i.e., human factors), and maintenance processes comprised of elements and interfaces. Human factors were found to have a significant effect in the 86 military and 15 civilian maintenance-related accidents studied. Whereas investigation boards were found to focus most heavily on element failures, a majority of the failures were found to occur at the process level. Maintenance instructions and their interfaces with the maintainers and inspectors who use them were the most frequently failed elements and interfaces, respectively. Recommendations are made to guide further research, and ideas are provided for improving process analysis by maintenance units and investigation boards.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Leticia Cervantes ◽  
Oscar Castillo ◽  
Denisse Hidalgo ◽  
Ricardo Martinez-Soto

We propose to use an approach based on fuzzy logic for the adaptation of gap generation and mutation probability in a genetic algorithm. The performance of this method is presented with the benchmark problem of flight control and results show how it can decrease the error during the flight of an airplane using fuzzy logic for some parameters of the genetic algorithm. In this case of study, we use fuzzy systems for adapting two parameters of the genetic algorithm to improve the design of a type 2 fuzzy controller and enhance its performance to achieve flight control. Finally, a statistical test is presented to prove the performance enhancement in the application using fuzzy adaptation in the genetic algorithm. It is important to mention that not only is this idea for control problems but also it can be used in pattern recognition and many different problems.


Author(s):  
Dennis B. Beringer ◽  
Robert E. Joslin

Excessive pilot flight-control forces have been identified as a causal factor in aircraft accidents, incidents, and anomalous events. However, the regulatory design requirements for fixed-wing and rotary-wing air-craft that are contained in the Code of Federal Regulations (CFR) have not been validated or updated in decades, and data for some specific situations were never included in the specifications. Results are presented for a recent study of over 300 participants categorized by gender, pilot/nonpilot status, and age group (10-year brackets from 18 through 69). Controls examined included sticks (left, center, right), yoke, rudder pedals (left, right), and helicopter collective. Results indicated that, on average, more than half of the sample could not achieve the short-term tabled forces used as reference points. However, more than half (60 to 87%) were able to sustain the prescribed long-term forces for 4 minutes or more in some control axes. It is recommended that reference tables both internal to the CFR and referenced by the CFR be modified to accommodate a larger percentage of the current user population.


Author(s):  
Kim-Phuong L. Vu ◽  
Robert Conrad Rorie ◽  
Lisa Fern ◽  
Robert Jay Shively

Objective The aim is to provide a high-level synthesis of human factors research that contributed to the development of detect-and-avoid display requirements for unmanned aircraft systems (UAS). Background The integration of UAS into the U.S. National Airspace System is a priority under the Federal Aviation Administration’s Modernization and Reform Act. For UAS to have routine access to the National Airspace System, UAS must have detect-and-avoid capabilities. One human factors challenge is to determine how to display information effectively to remote pilots for performing detect-and-avoid tasks. Method A high-level review of research informing the display requirements for UAS detect-and-avoid is provided. In addition, description of the contributions of human factors researchers in the writing of the requirements is highlighted. Results Findings from human-in-the-loop simulations are used to illustrate how evidence-based guidelines and requirements were established for the display of information to assist pilots in performing detect-and-avoid. Implications for human factors are discussed. Conclusion Human factors researchers and engineers made many contributions to generate the data used to justify the detect-and-avoid display requirements. Human factors researchers must continue to be involved in the development of standards to ensure that requirements are evidence-based and take into account human operator performance and human factors principles and guidelines. Application The research presented in this paper is relevant to the design of UAS, the writing of standards and requirements, and the work in human–systems integration.


Author(s):  
Qaisar R. (“Raza”) Waraich ◽  
Thomas A. Mazzuchi ◽  
Shahram Sarkani ◽  
David F. Rico

Unmanned aircraft system (UAS) mishaps attributable to lack of attention to human factors/ergonomics (HF/E) science in their ground control stations (GCSes) are alarmingly high, and UAS-specific HF/E engineering standards are years away from development. The ANSI/HFES 100-2007 human factors standard is proposed as a specification for the design of UASes because of the similarity between general-purpose computer workstations and GCSes. Data were collected from 20 UASes to determine the applicability of commercial standards to GCS designs. Analysis shows that general-purpose computer workstations and UAS GCSes are up to 98% similar. Therefore, our findings suggest that the application of commercial human factors standards may be a good solution for minimizing UAS mishaps.


Sign in / Sign up

Export Citation Format

Share Document