scholarly journals 407. A Clinically-Relevant Gene Therapy Strategy for Hemophilia A: Non-Myeloablative Transplantation of Hematopoietic Stem Cells Transduced with a High-Expression Factor VIII Transgene

2007 ◽  
Vol 15 ◽  
pp. S157
Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2713-2721 ◽  
Author(s):  
Qizhen Shi ◽  
Scot A. Fahs ◽  
David A. Wilcox ◽  
Erin L. Kuether ◽  
Patricia A. Morateck ◽  
...  

Abstract Although genetic induction of factor VIII (FVIII) expression in platelets can restore hemostasis in hemophilia A mice, this approach has not been studied in the clinical setting of preexisting FVIII inhibitory antibodies to determine whether such antibodies would affect therapeutic engraftment. We generated a line of transgenic mice (2bF8) that express FVIII only in platelets using the platelet-specific αIIb promoter and bred this 2bF8 transgene into a FVIIInull background. Bone marrow (BM) from heterozygous 2bF8 transgenic (2bF8tg+/−) mice was transplanted into immunized FVIIInull mice after lethal or sublethal irradiation. After BM reconstitution, 85% of recipients survived tail clipping when the 1100-cGy (myeloablative) regimen was used, 85.7% of recipients survived when 660-cGy (nonmyeloablative) regimens were used, and 60% of recipients survived when the recipients were conditioned with 440 cGy. Our further studies showed that transplantation with 1% to 5% 2bF8tg+/− BM cells still improved hemostasis in hemophilia A mice with inhibitors. These results demonstrate that the presence of FVIII-specific immunity in recipients does not negate engraftment of 2bF8 genetically modified hematopoietic stem cells, and transplantation of these hematopoietic stem cells can efficiently restore hemostasis to hemophilic mice with preexisting inhibitory antibodies under either myeloablative or nonmyeloablative regimens.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 526-534 ◽  
Author(s):  
Ali Ramezani ◽  
Robert G. Hawley

Abstract Insertional mutagenesis by retroviral vectors is a major impediment to the clinical application of hematopoietic stem cell gene transfer for the treatment of hematologic disorders. We recently developed an insulated self-inactivating gammaretroviral vector, RMSinOFB, which uses a novel enhancer-blocking element that significantly decreases genotoxicity of retroviral integration. In this study, we used the RMSinOFB vector to evaluate the efficacy of a newly bioengineered factor VIII (fVIII) variant (efVIII)—containing a combination of A1 domain point mutations (L303E/F309S) and an extended partial B domain for improved secretion plus A2 domain mutations (R484A/R489A/P492A) for reduced immunogenicity—toward successful treatment of murine hemophilia A. In cell lines, efVIII was secreted at up to 6-fold higher levels than an L303E/F309S A1 domain–only fVIII variant (sfVIIIΔB). Most important, when compared with a conventional gammaretroviral vector expressing sfVIIIΔB, lower doses of RMSin-efVIII-OFB–transduced hematopoietic stem cells were needed to generate comparable curative fVIII levels in hemophilia A BALB/c mice after reduced-intensity total body irradiation or nonmyeloablative chemotherapy conditioning regimens. These data suggest that the safety-augmented RMSin-efVIII-OFB platform represents an encouraging step in the development of a clinically appropriate gene addition therapy for hemophilia A.


Author(s):  
T. Tonn ◽  
S. Becker ◽  
C. Herder ◽  
M. Grez ◽  
E. Seifried

2007 ◽  
Vol 15 (6) ◽  
pp. 1093-1099 ◽  
Author(s):  
Christopher B Doering ◽  
Bagirath Gangadharan ◽  
Hillary Z Dukart ◽  
H Trent Spencer

2010 ◽  
Vol 12 (4) ◽  
pp. 333-344 ◽  
Author(s):  
Lucienne M. Ide ◽  
Neal N. Iwakoshi ◽  
Bagirath Gangadharan ◽  
Shawn Jobe ◽  
Robert Moot ◽  
...  

Author(s):  
Sara Fañanas-Baquero ◽  
Oscar Quintana-Bustamante ◽  
Daniel P. Dever ◽  
Omaira Alberquilla ◽  
Rebeca Sanchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document