330 Calcium sensitivity characteristics of the cardiac intracellular calcium release channel (ryanodine receptor) following chronic exposure to excessive circulating catecholamines

2003 ◽  
Vol 2 (1) ◽  
pp. 62
Author(s):  
M SCOOTE ◽  
S HARDING ◽  
K MACLEOD ◽  
A WILLIAMS
1997 ◽  
Vol 272 (1) ◽  
pp. H462-H468 ◽  
Author(s):  
G. P. Zaloga ◽  
P. R. Roberts ◽  
K. W. Black ◽  
M. Lin ◽  
G. Zapata-Sudo ◽  
...  

Myocardial contractile failure is a common cause of morbidity and mortality in patients with ischemic heart disease and systemic inflammatory states such as sepsis. Accumulating evidence indicates that contractile failure is associated with dysregulation of myoplasmic calcium levels. In a search for biochemical causes for contractile dysfunction, we found that the dipeptide carnosine improves cardiac contractility and tested the possibility that carnosine plays a role in the regulation of intracellular calcium. Carnosine increased contractility in a dose-dependent manner (1-10 mM) in isolated perfused rat hearts. and it also increased free intracellular calcium levels in isolated myocytes. Carnosine increased myocyte tension via calcium release from the ryanodine receptor calcium release channel in skinned myocardial fibers and increased open-state probability and dwell time of the isolated ryanodine receptor calcium release channel in lipid bilayers. In addition. we report that carnosine sensitizes the contractile proteins so calcium. These results suggest a novel role for carnosine as a modulator of intracellular calcium and contractility in cardiac tissue.


2002 ◽  
Vol 4 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Peter Koulen ◽  
Yiqiang Cai ◽  
Lin Geng ◽  
Yoshiko Maeda ◽  
Sayoko Nishimura ◽  
...  

1997 ◽  
Vol 17 (6) ◽  
pp. 3005-3012 ◽  
Author(s):  
T Jayaraman ◽  
A R Marks

The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) calcium release channel is present on the endoplasmic reticulum of most cell types. T lymphocytes which have been made deficient in IP3R1 lack detectable IP3-induced intracellular calcium release and exhibit defective signaling via the T-cell receptor (TCR) (T. Jayaraman, E. Ondriasova, K. Ondrias, D. Harnick, and A. R. Marks, Proc. Natl. Acad. Sci. USA 92:6007-6011, 1995). We now show that IP3R1-deficient T cells are resistant to apoptosis induced by dexamethasone, TCR stimulation, ionizing radiation, and Fas. Resistance to TCR-mediated apoptosis in IP3R1-deficient cells is reversed by pharmacologically raising cytoplasmic calcium levels. TCR-mediated apoptosis can be induced in calcium-free media, indicating that extracellular calcium influx is not required. These findings suggest that intracellular calcium release via the IP3R1 is a critical mediator of apoptosis.


2017 ◽  
Vol 439 ◽  
pp. 308-316 ◽  
Author(s):  
Marlena Schoenberg Fejzo ◽  
Ronny Myhre ◽  
Lucía Colodro-Conde ◽  
Kimber W. MacGibbon ◽  
Janet S. Sinsheimer ◽  
...  

1999 ◽  
Vol 206 (2) ◽  
pp. 163-177 ◽  
Author(s):  
Nora Rosemblit ◽  
Maria C. Moschella ◽  
Elena Ondria s̆ ◽  
David E. Gutstein ◽  
Karol Ondria s̆ ◽  
...  

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Yvonne Sleiman ◽  
Alain Lacampagne ◽  
Albano C. Meli

AbstractThe regulation of intracellular calcium (Ca2+) homeostasis is fundamental to maintain normal functions in many cell types. The ryanodine receptor (RyR), the largest intracellular calcium release channel located on the sarco/endoplasmic reticulum (SR/ER), plays a key role in the intracellular Ca2+ handling. Abnormal type 2 ryanodine receptor (RyR2) function, associated to mutations (ryanopathies) or pathological remodeling, has been reported, not only in cardiac diseases, but also in neuronal and pancreatic disorders. While animal models and in vitro studies provided valuable contributions to our knowledge on RyR2 dysfunctions, the human cell models derived from patients’ cells offer new hope for improving our understanding of human clinical diseases and enrich the development of great medical advances. We here discuss the current knowledge on RyR2 dysfunctions associated with mutations and post-translational remodeling. We then reviewed the novel human cellular technologies allowing the correlation of patient’s genome with their cellular environment and providing approaches for personalized RyR-targeted therapeutics.


2002 ◽  
Vol 278 (1) ◽  
pp. 444-453 ◽  
Author(s):  
Steven Reiken ◽  
Marta Gaburjakova ◽  
Silvia Guatimosim ◽  
Ana M. Gomez ◽  
Jeanine D'Armiento ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document