Subspace identification methods for a fast dynamic model structure screening

Author(s):  
Vitor V. Lopes ◽  
Carla C. Pinheiro ◽  
Jose C. Menezes
Author(s):  
André Krabdrup Sekunda ◽  
Hans Henrik Niemann ◽  
Niels Kjølstad Poulsen ◽  
Ilmar Ferreira Santos

Gas bearing systems have extremely small damping properties. Feedback control is thus employed to increase the damping of gas bearings. Such a feedback loop correlates the input with the measurement noise which in turn makes the assumptions for direct identification invalid. The originality of this article lies in the investigation of the impact of using different identification methods to identify a rotor-bearing systems’ dynamic model when a feedback loop is active. Two different identification methods are employed. The first method is open loop Prediction Error Method, while the other method is the modified Hansen scheme. Identification based on the modified Hansen scheme is conducted by identifying the Youla deviation system using subspace identification. Identification of the Youla deviation system is based on the Youla–Jabr–Bongiorno–Kucera parametrisation of plant and controller. By using the modified Hansen scheme, identification based on standard subspace identification methods can be used to identify the Youla deviation system of the gas bearing. This procedure ensures the input to the Youla deviation system, and the noise is uncorrelated even though the system is subject to feedback control. The effect of identifying the Youla deviation system compared to direct subspace identification of the gas bearing is further investigated through a simulation example. Experiments are conducted on the piezoelectrically controlled radial gas bearing. A dynamic model is identified using the modified Hansen scheme as well as using Prediction Error Method identification. The resulting models are compared for different imperfect nominal models, to examine under which conditions each method should be used.


2011 ◽  
Author(s):  
M. A. Green ◽  
C. R. Kaplan ◽  
J. P. Boris ◽  
E. S. Oran

2014 ◽  
Vol 701-702 ◽  
pp. 492-497
Author(s):  
Teng Yue Ba ◽  
Xi Qiang Guan ◽  
Jian Wu Zhang

In this paper, subspace identification methods are proposed to estimate the linear tire cornering stiffness, which are only based on the road tests data without any prior knowledge. This kind of data-driven method has strong robustness. In order to validate the feasibility and effectiveness of the algorithms, a series of standard road tests are carried out. Comparing with different subspace algorithms used in road tests, it can be concluded that the front tire cornering stiffness can be estimated accurately by the N4SID and CCA methods when the double lane change test data are taken into analysis.


1998 ◽  
Vol 12 (5) ◽  
pp. 679-692 ◽  
Author(s):  
M. Abdelghani ◽  
M. Verhaegen ◽  
P. Van Overschee ◽  
B. De Moor

Sign in / Sign up

Export Citation Format

Share Document