10 OP Helicobacter pylori VacA cytotoxin stimulates the release of VEGF from human gastric epithelial cells in vitro through an EGF-receptor-mediated pathway

2002 ◽  
Vol 34 ◽  
pp. A13
Author(s):  
R. Caputo ◽  
B.A. Manzo ◽  
C. Tuccillo ◽  
C. Del Vecchio Blanco ◽  
G. Tortora ◽  
...  
1999 ◽  
Vol 67 (8) ◽  
pp. 4237-4242 ◽  
Author(s):  
Nicola L. Jones ◽  
Andrew S. Day ◽  
Hilary A. Jennings ◽  
Philip M. Sherman

ABSTRACT The mechanisms involved in mediating the enhanced gastric epithelial cell apoptosis observed during infection withHelicobacter pylori in vivo are unknown. To determine whether H. pylori directly induces apoptosis of gastric epithelial cells in vitro and to define the role of the Fas-Fas ligand signal transduction cascade, human gastric epithelial cells were infected with H. pylori for up to 72 h under microaerophilic conditions. As assessed by both transmission electron microscopy and fluorescence microscopy, incubation with acagA-positive, cagE-positive, VacA-positive clinical H. pylori isolate stimulated an increase in apoptosis compared to the apoptosis of untreated AGS cells (16.0% ± 2.8% versus 5.9% ± 1.4%, P < 0.05) after 72 h. In contrast, apoptosis was not detected following infection withcagA-negative, cagE-negative, VacA-negative clinical isolates or a Campylobacter jejuni strain. In addition to stimulating apoptosis, infection with H. pylorienhanced Fas receptor expression in AGS cells to a degree comparable to that of treatment with a positive control, gamma interferon (12.5 ng/ml) (148% ± 24% and 167% ± 24% of control, respectively). The enhanced Fas receptor expression was associated with increased sensitivity to Fas-mediated cell death. Ligation of the Fas receptor with an agonistic monoclonal antibody resulted in an increase in apoptosis compared to the apoptosis of cells infected with the bacterium alone (38.5% ± 7.1% versus 16.0% ± 2.8%,P < 0.05). Incubation with neutralizing anti-Fas antibody did not prevent apoptosis of H. pylori-infected cells. Taken together, these findings demonstrate that the gastric pathogen H. pylori stimulates apoptosis of gastric epithelial cells in vitro in association with the enhanced expression of the Fas receptor. These data indicate a role for Fas-mediated signaling in the programmed cell death that occurs in response toH. pylori infection.


2006 ◽  
Vol 21 (4) ◽  
pp. 759-766 ◽  
Author(s):  
Songhua Zhang ◽  
Akinori Yanaka ◽  
Masafumi Tauchi ◽  
Hideo Suzuki ◽  
Takeshi Shibahara ◽  
...  

2008 ◽  
Vol 295 (3) ◽  
pp. G431-G441 ◽  
Author(s):  
Susan Kenny ◽  
Cedric Duval ◽  
Stephen J. Sammut ◽  
Islay Steele ◽  
D. Mark Pritchard ◽  
...  

The gastric pathogen Helicobacter pylori ( H. pylori) is linked to peptic ulcer and gastric cancer, but the relevant pathophysiological mechanisms are unclear. We now report that H. pylori stimulates the expression of plasminogen activator inhibitor (PAI)-1, urokinase plasminogen activator (uPA), and its receptor (uPAR) in gastric epithelial cells and the consequences for epithelial cell proliferation. Real-time PCR of biopsies from gastric corpus, but not antrum, showed significantly increased PAI-1, uPA, and uPAR in H. pylori-positive patients. Transfection of primary human gastric epithelial cells with uPA, PAI-1, or uPAR promoters in luciferase reporter constructs revealed expression of all three in H+/K+ATPase- and vesicular monoamine transporter 2-expressing cells; uPA was also expressed in pepsinogen- and uPAR-containing trefoil peptide-1-expressing cells. In each case expression was increased in response to H. pylori and for uPA, but not PAI-1 or uPAR, required the virulence factor CagE. H. pylori also stimulated soluble and cell surface-bound uPA activity, and both were further increased by PAI-1 knockdown, consistent with PAI-1 inhibition of endogenous uPA. H. pylori stimulated epithelial cell proliferation, which was inhibited by uPA immunoneutralization and uPAR knockdown; exogenous uPA also stimulated proliferation that was further increased after PAI-1 knockdown. The proliferative effects of uPA were inhibited by immunoneutralization of the EGF receptor and of heparin-binding EGF (HB-EGF) by the mutant diphtheria toxin CRM197 and an EGF receptor tyrosine kinase inhibitor. H. pylori induction of uPA therefore leads to epithelial proliferation through activation of HB-EGF and is normally inhibited by concomitant induction of PAI-1; treatments directed at inhibition of uPA may slow the progression to gastric cancer.


2000 ◽  
Vol 191 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Momoyo Asahi ◽  
Takeshi Azuma ◽  
Shigeji Ito ◽  
Yoshiyuki Ito ◽  
Hiroyuki Suto ◽  
...  

Attachment of Helicobacter pylori to gastric epithelial cells induces various cellular responses, including the tyrosine phosphorylation of an unknown 145-kD protein and interleukin 8 production. Here we show that this 145-kD protein is the cagA product of H. pylori, an immunodominant, cytotoxin-associated antigen. Epithelial cells infected with various H. pylori clinical isolates resulted in generation of tyrosine-phosphorylated proteins ranging from 130 to 145 kD in size that were also induced in vitro by mixing host cell lysate with bacterial lysate. When epithelial cells were infected with [35S]methionine-labeled H. pylori, a radioactive 145-kD protein was detected in the immunoprecipitates with antiphosphotyrosine antibody or anti-CagA (cytotoxin-associated gene A) antibody. Consistently, the 145-kD protein recognized by the anti-CagA and antiphosphotyrosine antibodies was induced in epithelial cells after infection of wild-type H. pylori but not the cagA::Km mutant. Furthermore, the amino acid sequence of the phosphorylated 145-kD protein induced by H. pylori infection was identical to the H. pylori CagA sequence. These results reveal that the tyrosine-phosphorylated 145-kD protein is H. pylori CagA protein, which may be delivered from attached bacteria into the host cytoplasm. The identification of the tyrosine-phosphorylated protein will thus provide further insights into understanding the precise roles of CagA protein in H. pylori pathogenesis.


1999 ◽  
Vol 94 (6) ◽  
pp. 1508-1511 ◽  
Author(s):  
Duane T. Smoot ◽  
Zakiya Wynn ◽  
Tollie B. Elliott ◽  
Cornell R. Allen ◽  
Getachew Mekasha ◽  
...  

1993 ◽  
Vol 5 (9) ◽  
pp. 687-694 ◽  
Author(s):  
Vittorio Ricci ◽  
Patrizia Sommi ◽  
Roberto Fiocca ◽  
Emanuela Cova ◽  
Natale Figura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document