Structure, Elastic Properties, Thermodynamic and Electronic Properties of Al-Y Alloy Under Pressure from First-principles Calculations

2018 ◽  
Vol 47 (5) ◽  
pp. 1325-1332
Author(s):  
Niu Xiaofeng ◽  
Huang Zhiwei ◽  
Wang Han ◽  
Hu Lei ◽  
Wang Baojian
2020 ◽  
Vol 34 (17) ◽  
pp. 2050150
Author(s):  
Dan Hong ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Bin Tang ◽  
Qi-Jun Liu

The first-principles calculations are used to investigate the effects on mechanical and electronic properties of Ti-7333 alloy under the tension stress along [001], [100] and [110] directions. First, we study the structure and elastic properties of Ti-7333 alloy with 2, 16, 54 and 128 atoms, finding that the structural parameters of four models are comparative due to the approximate value of c/a and the elastic properties are also similar. Hence, we choose Ti-7333 alloy with 16 atoms to study the effects on mechanical and electronic properties under tension stress along [001], [100] and [110] directions. The changes of independent elastic constants, Debye temperature and anisotropic behavior under different tension stress along all the three directions can reflect that the tensile strength of Ti-7333 alloy may exist between [Formula: see text] and [Formula: see text] GPa and also find that it is easier to change the resistance to deformation of Ti-7333 alloy under the tension stress along [100] direction compared with [001] and [110] directions. What’s more, the calculated mechanical parameters show that the Ti-7333 alloy is brittle and the tendency of variations is small with the increase in tension stress. The effects on electronic properties including metallic and covalent properties are not obvious due to the approximate height of TDOS, pseudogap and charge density.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1640 ◽  
Author(s):  
Yangqi Ji ◽  
Xiaoli Yuan

The elastic properties and electronic properties of MxNy (M = Ti, Zr) TiN, Ti2N, Zr3N4, ZrN with different structures have been investigated using density functional theory. Through the calculation of the elastic constants, it was found that all of these structures meet the mechanical stability except for ZrN with space group P63mc. Their mechanical properties are studied by a comparison of various parameters. The stiffness of TiN is larger than that of ZrN with space group Fm 3 ¯ m. Ti2N’s stiffness with space group I41/amdz is larger than Ti2N with space group P42/mnm. Zr3N4’s stiffness with space group Pnam is largest in three structures of Zr3N4. TiN, Ti2N and ZrN are non-central force, Zr3N4 is central force. TiN and ZrN with space group Fm 3 ¯ m are brittle, and TiN is brittler than ZrN with space group Fm 3 ¯ m. The two kinds of Ti2N are brittle and Ti2N with space group I41/amdz is larger. Three structures of Zr3N4 are tough and Zr3N4 with space group I 4 ¯ 3d is the toughest. Meanwhile, the electronic properties of TiN, Ti2N, Zr3N4 and ZrN were calculated, possible superconducting properties of the studied materials were predicted.


RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 81943-81956 ◽  
Author(s):  
Jing Wu ◽  
XiaoYu Chong ◽  
Rong Zhou ◽  
YeHua Jiang ◽  
Jing Feng

The equilibrium crystal structures, stability, elastic properties, hardness and electronic structures of all the Fe–P binary compounds are investigated systematically by first principles calculations.


2021 ◽  
Vol 606 ◽  
pp. 412825
Author(s):  
Wei-Hong Liu ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Bin Tang ◽  
Qi-Jun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document