scholarly journals Discussion on the gas source of the Triassic Xujiahe Formation tight sandstone gas reservoirs in Yuanba and Tongnanba, Sichuan Basin: An answer to Yin Feng et al.

2013 ◽  
Vol 40 (2) ◽  
pp. 268-275 ◽  
Author(s):  
Jinxing DAI ◽  
Fengrong LIAO ◽  
Yunyan NI
Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7225
Author(s):  
Chuantong Ruan ◽  
Jing Ba ◽  
José M. Carcione ◽  
Tiansheng Chen ◽  
Runfa He

Low porosity-permeability structures and microcracks, where gas is produced, are the main characteristics of tight sandstone gas reservoirs in the Sichuan Basin, China. In this work, an analysis of amplitude variation with offset (AVO) is performed. Based on the experimental and log data, sensitivity analysis is performed to sort out the rock physics attributes sensitive to microcrack and total porosities. The Biot–Rayleigh poroelasticity theory describes the complexity of the rock and yields the seismic properties, such as Poisson’s ratio and P-wave impedance, which are used to build rock-physics templates calibrated with ultrasonic data at varying effective pressures. The templates are then applied to seismic data of the Xujiahe formation to estimate the total and microcrack porosities, indicating that the results are consistent with actual gas production reports.


2011 ◽  
Vol 38 (4) ◽  
pp. 409-418 ◽  
Author(s):  
Qiulin Guo ◽  
Jianzhong Li ◽  
Ningsheng Chen ◽  
Junwen Hu ◽  
Hongbing Xie ◽  
...  

2010 ◽  
Vol 37 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Zhao Wenzhi ◽  
Wang Hongjun ◽  
Xu Chunchun ◽  
Bian Congsheng ◽  
Wang Zecheng ◽  
...  

2017 ◽  
Vol 36 (5) ◽  
pp. 1022-1039 ◽  
Author(s):  
Yingchun Guo ◽  
Licai Song ◽  
Xinxin Fang ◽  
Kaixun Zhang

Tight gas accumulations, commonly characterized by low permeability, low porosity, and complicated pore structure, are widely distributed in the Sichuan Basin. Recent exploration in the Chengdu Sag, Western Sichuan Basin has proven that Jurassic tight-sandstone reservoirs attach significant gas potential. However, long distance migration between source and reservoir intervals entangles understanding of the tight-gas accumulation mechanism. It is unclear whether producible gas in Jurassic intervals is either from “simple sweet-spots in a continuous accumulation” or “conventionally trapped accumulations in low-permeability reservoir rocks”. To identify the regionally active gas system and characterize the charging pattern, a geochemical study was performed by interpreting the gas molecular and carbon isotope compositions in Jurassic and conducting gas–source correlations as well as gas migration distance calculation with the relationship among δ13C1 vs. Ro vs. H (burial depth). Research results indicate that the Jurassic tight gases in Majing-Shifang areas are coal-derived dry gases generated by the primary cracking of kerogen. Gas/source correlation and gas migration distance calculation reveal that gases are mainly sourced from the Upper Triassic humic source rocks (T3 x5, the fifth member of the Xujiahe Formation). Gas accumulations in the Jurassic Penglaizhen Formation were formed with an original vertical migration of about 2–3 km and then a long-distance lateral migration within tight sand layers, which is verified by the decreasing δ13C1 and the general increasing iC4/ nC4 in the Penglaizhen Formation. The Jurassic tight-sandstone reservoirs in Majing-Shifang areas occur in low-porosity and low-permeability reservoir rocks in conventional lithological traps, which are not continuous-type gas accumulations or basin-centered gas systems. The faults in Majing area serve as dominant vertical conducting pathway and the relatively permeable intervals within Jurassic and microfractures play an important role in the development of the conventionally trapped natural gas accumulations.


Sign in / Sign up

Export Citation Format

Share Document