coal measure
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 53)

H-INDEX

17
(FIVE YEARS 3)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Dongna Liu ◽  
Yun Zhang ◽  
Anchao Zhou ◽  
Emmanuel Nnachi ◽  
Shuting Huo ◽  
...  

In order to ascertain the kaolinite crystallinity of Carboniferous Permian coal-measure kaolinite rocks, seven groups of fresh samples were collected from below the ground in the Xiaoyu mine, Datong coalfield. Microscopy, X-ray diffraction (XRD), differential thermal analysis (DTA), infrared (IR) spectroscopy and X-ray fluorescence (XRF) spectrometry methods were applied to the samples. The petrographic analysis results show that the kaolinite rocks are characterized as compact, phaneritic, clastic, sand-bearing, sandy and silty types; the kaolinite content in the Shanxi formation and upper Taiyuan formations was more than 95%, while it was 60–90% in the middle and lower Taiyuan formations. Based on the Hinckley index and the features of XRD, DTA and IR of kaolinites, crystallinity was classified as having three grades: ordered, slightly disordered and disordered. The kaolinites’ SiO2 /Al2O3 molar ratio was about 1.9–5.7, with a chemical index of alteration (CIA) of about 95.4–99.5. This research suggests that the kaolinite crystallinity correlates positively to its clay mineral content, purity and particle size, which are also related to the SiO2/Al2O3 molar ratio and CIA. The original sedimentary environment and weathering have a direct influence on kaolinite crystallinity, and the existence of organic matter is conducive to the stable existence of kaolinite. The study results have significance for the extraction and utilization of coal-measure kaolinite and the development of kaolinite crystallography and mineralogy.


Author(s):  
Wu Haibo ◽  
Wu Rongxin ◽  
Zhang Pingsong ◽  
Huang Yanhui ◽  
Huang Yaping ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8109
Author(s):  
Runze Yang ◽  
Xianzheng Zhao ◽  
Changyi Zhao ◽  
Xiugang Pu ◽  
Haitao Liu ◽  
...  

The Wumaying buried hill experienced multi-stage tectonic movements, which resulted in a complicated and unclear nature of the hydrocarbon accumulation process. To solve these problems, in this study—based on the structural evolution and burial–thermal history of the strata, using petrology, fluid inclusion microthermometry, geochemical analysis of oil and gas, Laser Raman spectrum, and fluorescence spectrum—the history of hydrocarbon charging was revealed, and the differences in hydrocarbon charging of different wells was clarified. The results indicate that the only source for Permian oil and gas reservoirs are Carboniferous–Permian coal-measure source rocks in the Wumaying buried hill. There are three periods of hydrocarbon charging. Under the channeling of faults and micro cracks, low-mature oil and gas accumulation was formed in the first period, and the accumulation time was 112–93 Ma. In the late Cretaceous, a large-scale uplift exposed and damaged the reservoirs, and part of the petroleum was converted into bitumen. In the middle–late Paleogene, the subsidence of strata caused the coal-measure to expel mature oil and gas, and the accumulation time of mature oil and gas was 34–24 Ma. Since the Neogene, natural gas and high-mature oil have been expelled due to the large subsidence entering the reservoir under the channeling of active faults; the accumulation time was 11–0 Ma. The microfractures of Permian reservoirs in the Wumaying buried hill are the main storage spaces of hydrocarbons, and the fractured reservoirs should be explored in the future. The first period of charging was too small and the second period was large enough in the WS1 well, resulting in only a late period of charging in this well.


2021 ◽  
pp. 87-101
Author(s):  
Zhao Wenzhi ◽  
Zhang Yan ◽  
Xu Dafeng ◽  
Zhao Changyi

Author(s):  
Han Yang ◽  
Jianzhong Liu ◽  
Dongming Zhang ◽  
Weijing Xiao ◽  
Xiaolei Wang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ke Li ◽  
Weijian Yu ◽  
Youlin Xu ◽  
Long Lai ◽  
Hui Zhang ◽  
...  

To investigate the strength characteristics of mudstone in deep-buried coal-measure formation, four types of experiments have been conducted: (i) the X-ray diffraction (XRD) test; (ii) the scanning electron microscope (SEM) scanning test; (iii) the point load strength index test; and (iv) the uniaxial compressive strength test. It was concluded that the mudstone of the deep-buried coal measures in the Longtan Formation is dominated by chlorite, quartz, and albite using the XRD test, of which chlorite is primary, accounting for 74.3%. It was found that the three minerals in the mudstone are unevenly distributed using the SEM scanning test, albite is irregularly distributed in chlorite, and quartz is present in the albite and chlorite. Sixty-five specimens were tested for the point load strength index. After processing the data using the method suggested by the International Society for Rock Mechanics and Rock Engineering(ISRM), it was found that the maximum value of Is(50) was 6.10 MPa, the minimum is 0.14 MPa, and 53% of the specimens’ Is(50) values are below 2.0 MPa. The RMT-150C rock mechanics testing machine was used to conduct uniaxial compression tests on six specimens. The maximum uniaxial compressive strength (UCS) value is 59.26 MPa, the minimum value is 31.77 MPa, and the average is 45.64 MPa. Linear fitting and logarithmic fitting are carried out for the correlation between UCS and Is(50). The goodness of fit R2 of the linear fitting is 0.863, and that of the logarithmic fitting is 0.919, indicating a strong correlation between them. When it is challenging to make standard specimens, Is (50) can be used to estimate UCS.


ACS Omega ◽  
2021 ◽  
Vol 6 (35) ◽  
pp. 22831-22839
Author(s):  
Na Zhang ◽  
Shuaidong Wang ◽  
Fangfang Zhao ◽  
Xiaoming Sun ◽  
Manchao He

Sign in / Sign up

Export Citation Format

Share Document