Path Planning of Tomato Cluster Harvesting Robot for Realizing Low Vibration and Speedy Transportation

2009 ◽  
Vol 2 (3) ◽  
pp. 108-115 ◽  
Author(s):  
Naoshi Kondo ◽  
Koichi Tanihara ◽  
Tomowo Shiigi ◽  
Hiroshi Shimizu ◽  
Mitsutaka Kurita ◽  
...  
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lufeng Luo ◽  
Hanjin Wen ◽  
Qinghua Lu ◽  
Haojie Huang ◽  
Weilin Chen ◽  
...  

Collision-free autonomous path planning under a dynamic and uncertainty vineyard environment is the most important issue which needs to be resolved firstly in the process of improving robotic harvesting manipulator intelligence. We present and apply energy optimal and artificial potential field to develop a path planning method for six degree of freedom (DOF) serial harvesting robot under dynamic uncertain environment. Firstly, the kinematical model of Six-DOF serial manipulator was constructed by using the Denavit-Hartenberg (D-H) method. The model of obstacles was defined by axis-aligned bounding box, and then the configuration space of harvesting robot was described by combining the obstacles and arm space of robot. Secondly, the harvesting sequence in path planning was computed by energy optimal method, and the anticollision path points were automatically generated based on the artificial potential field and sampling searching method. Finally, to verify and test the proposed path planning algorithm, a virtual test system based on virtual reality was developed. After obtaining the space coordinates of grape picking point and anticollision bounding volume, the path points were drew out by the proposed method. 10 times picking tests for grape anticollision path planning were implemented on the developed simulation system, and the success rate was up to 90%. The results showed that the proposed path planning method can be used to the harvesting robot.


2021 ◽  
Vol 188 ◽  
pp. 106350
Author(s):  
Guichao Lin ◽  
Lixue Zhu ◽  
Jinhui Li ◽  
Xiangjun Zou ◽  
Yunchao Tang

2014 ◽  
Vol 530-531 ◽  
pp. 1063-1067 ◽  
Author(s):  
Wei Ji ◽  
Jun Le Li ◽  
De An Zhao ◽  
Yang Jun

To the problems of real-time obstacle avoidance path planning for apple harvesting robot manipulator in dynamic and unstructured environment, a method based on improved ant colony algorithm is presented. Firstly, Vector description is utilized to describe the area where obstacles such as branches is located as irregular polygon in free space, and MAKLINK graph is used to build up the environment space model. Then, the improved Dijkstra algorithm is used to find the initial walk path for apple harvesting robot manipulator. Finally, the improved ant colony algorithm is applied to optimize the initial path. The experiment result shows that the proposed method is simple and the robot manipulator can avoid the branches to pick the apple successfully in a relatively short time.


2020 ◽  
Author(s):  
Sadaf Zeeshan ◽  
Tauseef Aized

Abstract One of the most challenging areas in robot design is its kinematic analysis for proper and efficient path planning. In agricultural robots, this study is even more crucial due to the uneven terrain and unstructured environment. In agricultural robots, work has been done on fruit harvesting robots yet its commercial recognition is still underway. Further research needs to be done in this field to make the fruit harvesting robots more commercially acceptable. In this paper, a 6 degree of freedom (DOF) orange harvesting robot is designed and its kinematic analysis is done. Forward kinematic is done using Denavit-Hartenberg (DH) parameters while the inverse kinematics is done using algebraic method. The calculated formulas are verified by simulation on RoboAnalyzer software. The algorithm for inverse kinematics using probabilistic approach did not generate any error and worked successfully generating 16 results within the workspace. The simulated dynamic results also supported the kinematic model. The kinematic study validates the model design and calculations, whereas, its simulation verifies the path planning and reachability of oranges on the trees within the confined workspace.


Author(s):  
Edward Reutzel ◽  
Kevin Gombotz ◽  
Richard Martukanitz ◽  
Panagiotis Michaleris

Sign in / Sign up

Export Citation Format

Share Document