scholarly journals Molecular characterization and phylogenetic analysis of Middle East 2009 H1N1 pdm isolates

2010 ◽  
Vol 3 (8) ◽  
pp. 624-628 ◽  
Author(s):  
Ghaleb Adwan
2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Seyedeh Elham Rezatofighi ◽  
Khalil Mirzadeh ◽  
Fahimeh Mahmoodi

Abstract Background Bovine ephemeral fever (BEF) is an arthropod-borne viral disease caused by the BEF virus (BEFV). This single-stranded RNA virus that affects cattle and water buffalo is endemic in tropical and subtropical regions including Iran. While BEF is a major disease of cattle in Iran, information regarding its agent, molecular characterization, and circulating viruses are highly limited. The current study aimed to, firstly, determine the genetic and antigenic characteristics of BEFV strains in Khuzestan province in Southwest of Iran in 2018 and 2020 and, secondly, to compare them with strains obtained from other areas. Results By phylogenetic analysis based on the Glycoprotein gene, BEFV strains were divided into four clusters of Middle East, East Asia, South Africa, and Australia; in which the 2018 and 2020 Iranian BEFV strains were grouped in the Middle East cluster with the Turkish, Indian, and Israeli strains. Depending on the chronology and geographical area, the outbreaks of Turkey (2020), Iran (2018 and 2020), and India (2018 and 2019) are proposed to be related. These BEFVs had the highest identity matrix and the lowest evolutionary distance among the studied strains. Multiple sequence alignment of G1, G2, and G3 antigenic sites showed that these neutralizing epitopes are highly conserved among the strains of the Middle East cluster; however, the strains previously identified in Iran differed in three amino acids placed in G1 and G2 epitopes. Conclusion The findings revealed that BEFVs circulating in the Middle East are closely related phylogenetically and geographically. They also have similar antigenic structures; therefore, developing a vaccine based on these strains can be effective for controlling BEF in the Middle East.


2021 ◽  
Author(s):  
Seyedeh Elham Rezatofighi ◽  
Khalil Mirzadeh ◽  
Fahimeh Mahmoodi

Abstract Background Bovine ephemeral fever (BEF) is an arthropod-borne viral disease caused by the BEF virus (BEFV). This single-stranded RNA virus that affects cattle and water buffalo is endemic in tropical and subtropical regions including Iran. While BEF is a major disease of cattle in Iran, information regarding its agent, molecular characterization, and circulating viruses are highly limited. The current study aimed to, firstly, determine the genetic and antigenic characteristics of BEFV strains in Khuzestan province in Southwest of Iran from 2018 to 2020 and, secondly, to compare them with strains obtained from other areas. Results By phylogenetic analysis based on the Glycoprotein gene, BEFV strains were divided into four clusters of Middle East, East Asia, South Africa, and Australia; in which the 2018 and 2020 Iranian BEFV strains were grouped in the Middle East cluster with the Turkish, Indian, and Israeli strains. Depending on the chronology and geographical area, the outbreaks of Turkey (2020), Iran (2018 and 2020), and India (2018 and 2019) are proposed to be related. These BEFVs had the highest identity matrix and the lowest evolutionary distance among the studied strains. Multiple sequence alignment of G1, G2, and G3 antigenic sites showed that these neutralizing epitopes are highly conserved among the strains of the Middle East cluster; however, the strains previously identified in Iran differed in three amino acids placed in G1 and G2 epitopes. Conclusion The findings revealed that BEFVs circulating in the Middle East are closely related phylogenetically and geographically. They also have similar antigenic structures; therefore, developing a vaccine based on these strains can be effective for controlling BEF in the Middle East.


2020 ◽  
Vol 141 ◽  
pp. 39-46
Author(s):  
MD Dorjievna Batueva ◽  
X Pan ◽  
J Zhang ◽  
X Liu ◽  
W Wei ◽  
...  

In the present study, we provide supplementary data for Myxidium cf. rhodei Léger, 1905 based on morphological, histological and molecular characterization. M. cf. rhodei was observed in the kidneys of 918 out of 942 (97%) roach Rutilus rutilus (Linnaeus, 1758). Myxospores of M. cf. rhodei were fusiform with pointed ends, measuring 12.7 ± 0.1 SD (11.8-13.4) µm in length and 4.6 ± 0.1 (3.8-5.4) µm in width. Two similar pear-shaped polar capsules were positioned at either ends of the longitudinal axis of the myxospore: each of these capsules measured 4.0 ± 0.1 (3.1-4.7) µm in length and 2.8 ± 0.1 (2.0-4.0) µm in width. Polar filaments were coiled into 4 to 5 turns. Approximately 18-20 longitudinal straight ridges were observed on the myxospore surface. The suture line was straight and distinctive, running near the middle of the valves. Histologically, the plasmodia of the present species were found in the Bowman’s capsules, and rarely in the interstitium of the host. Phylogenetic analysis revealed that M. cf. rhodei was sister to M. anatidum in the Myxidium clade including most Myxidium species from freshwater hosts.


Author(s):  
C. Patidar ◽  
D.K. Sharma ◽  
R. Singathia ◽  
P. Suthar ◽  
A. Saraswat ◽  
...  

Background: Poultry enteritis is an important multifactorial disease. Chicken Astrovirus (CAstV) usually associated with enteritis. The aim of this study was to investigate the occurrence of CAstV in poultry enteritis cases, its molecular characterization, phylogenetic analysis and gross and microscopic examination of intestine and liver specimen affected with CAstV. Methods: Total 604 dead poultry birds from commercial poultry farms affected with enteritis were examined for presence of CAstV. Intestinal samples of four birds were pooled to make one biological sample. CAstV was detected by reverse transcriptase PCR (RT-PCR) using ORF-1b gene specific primers. Molecular characterization was carried out by partial gene sequencing. Result: CAstV was detected in 20.52% (31/151) of samples. Highest prevalence (49.29%) was observed in 0-1 week old chicks. The partial molecular characterization revealed high similarity of the nucleotide sequence from India (97% to 93%) and from USA, Brazil, Poland and Korea (94 to 92%). Further similarity of amino acid sequences of CAstV from India (100% to 98%) and from USA, Brazil, Poland and Korea (98 to 97%) was observed. Histopathological examination revealed villous atrophy, congestion and atrophic cystic glands in sub-mucosa of intestine. Further severe congestion and hemorrhages along with infiltration of inflammatory cells in liver parenchyma was observed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258318
Author(s):  
Marta Antas ◽  
Monika Olech ◽  
Anna Szczotka-Bochniarz

Porcine epidemic diarrhoea (PED) is a highly contagious enteric viral disease of pigs with a high morbidity and mortality rate, which ultimately results in huge economic losses in the pig production sector. The etiological agent of this disease is the porcine epidemic diarrhoea virus (PEDV) which is an enveloped, positive single-stranded RNA virus. The aim of this study was to perform molecular characterization of PEDV to identify the strains circulating in Poland. In this study, 662 faecal samples from 2015 to 2021 were tested with reverse transcription quantitative real-time PCR (RT-qPCR) and the results showed that 3.8% of the tested samples revealed a positive result for PEDV. A phylogenetic analysis of the complete genome and complete S gene sequences showed that Polish PEDV strains belonged to the G1b (S-INDEL) subgroup and were closely related to the European PEDV strains isolated from 2014 to 2019. Furthermore, RDP4 analysis revealed that the Polish PEDV strains harboured a recombinant fragment of ~400 nt in the 5’ end of S gene with PEDV and swine enteric coronavirus (SeCoV) being the major and minor parents, respectively. Antigenic analysis showed that the aa sequences of neutralizing epitopes were conserved among the Polish PEDV strains. Only one strain, #0100/5P, had a unique substitution in the COE epitope. However, Polish PEDV strains showed several substitutions, especially in the COE antigen, as compared to the classical strain CV777. To the best of our knowledge, this is the first report concerning the molecular characterization of porcine epidemic diarrhoea virus strains, as well as the first phylogenetic analysis for PEDV in Poland.


2013 ◽  
Vol 159 (4) ◽  
pp. 773-778 ◽  
Author(s):  
Huan Sun ◽  
Daoliang Lan ◽  
Lifang Lu ◽  
Molin Chen ◽  
Changsong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document