diarrhoea virus
Recently Published Documents


TOTAL DOCUMENTS

766
(FIVE YEARS 101)

H-INDEX

55
(FIVE YEARS 5)

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
L. Chantillon ◽  
B. Devriendt ◽  
B. De Jonge ◽  
J. Oostvogels ◽  
J. Coppens ◽  
...  

Abstract Background Between 2007 and 2011 several thousands of calves died from bovine neonatal pancytopenia (BNP), a bleeding syndrome triggered by vaccine induced alloantibodies from the dams. Following withdrawal of the involved bovine viral diarrhoea virus (BVDv) vaccine, the incidence of this condition rapidly decreased, with no reported cases in the last 5 years. Here, we report a recent immune-mediated pancytopenia in three calves from two different suckler herds, clinically indistinguishable from BNP. Case presentation Three Belgian Blue suckler calves from two different farms, aged around two weeks, showed multiple bleedings disseminated on the skin and petechiae and ecchymoses on the mucosae. Blood examination confirmed anaemia, leukopenia and thrombocytopenia. BVDv infection was excluded. Despite blood transfusion and cortisone therapy, all three animals died. Necropsy and histology confirmed bone marrow depletion. Binding of IgG from the dams on leukocytes of the calves was demonstrated by flow cytometry. Two calves, originating from the same farm, received colostrum from the same dam. None of the calves were given colostrum replacers or colostrum supplements. No link with the BNP causing BVDv vaccine could be evidenced. However, dams had been vaccinated against bovine herpesvirus 1, parainfluenza-3 virus, bovine respiratory syncytial virus and bluetongue virus serotype 8. Conclusions Alloimmune mediated pancytopenia was evidenced in three animals, clinically and pathologically indistinguishable from BNP. Whether this disease is again vaccine mediated remains to be determined.


Author(s):  
John VanLeeuwen ◽  
Joan Muraya ◽  
George Gitau ◽  
Dennis Makau ◽  
Bronwyn Crane ◽  
...  

Little is known of the risk factors associated with occurrence of Neospora caninum and Bovine Viral Diarrhoea Virus (BVDV) infection in Kenya. This cross-sectional study hypothesized that there are significant biosecurity measures associated with N. caninum and BVDV infections on smallholder dairy farms in Kenya that could be adopted to reduce seroprevalence and impacts. From 158 randomly selected farms in Meru County, Kenya, 470 serum samples were collected from dairy cattle (over six months of age and unvaccinated for these two pathogens). Sera were analyzed for antibodies to N. caninum and antibodies and antigens to BVDV. Data on risk factors were obtained through face-to-face interviews with the farmers. Multivariable logistic regression models were used to identify significant risk factors associated with seropositivity for the pathogens. The apparent seroprevalence of N. caninum, BVDV antibody, BVDV antigen, and co-infection with N. caninum and BVDV antibody and/or antigen were 35.1%, 47.1%, 36.2% and 18.5%, respectively. Risk factors associated with N. caninum antibody included: introducing milking cows into the farm, lending of cattle between farms, farm dogs having access to bovine aborted fetuses, and dogs whelping in the farm compound, with an interaction between the last two variables. BVDV antigen was associated with cattle having contact with pigs, and an interaction between cattle age and whether farms introduced new calves onto farms, and cattle age and whether visiting dairy farmers have access to the cow shed. Cows had higher odds of having BVDV antibodies compared to heifers. Factors associated with co-infection included cow parity, direct contact between dairy cattle, dogs and goats, and introducing new milking cows into the farms. Antibody and antigen results may be partly a function of classical swine fever virus or border disease virus interactions. Farmer education on these biosecurity measures is recommended, along with introduction of BVDV vaccination.


2021 ◽  
Author(s):  
Naomi S. Prosser ◽  
Edward M. Hill ◽  
Derek Armstrong ◽  
Lorna Gow ◽  
Michael J. Tildesley ◽  
...  

Abstract Background: Bovine viral diarrhoea virus (BVDV) causes substantial economic losses to cattle herds; however, control and eradication can be achieved by identifying and removing persistently infected cattle. Each UK nation has separate control programmes. The English scheme, BVDFree, started in 2016 and is voluntary. Methods: We analysed the test results submitted to BVDFree from 5,847 herds from 2016 to 2020. Results: In 2020, 13.5% of beef breeder herds and 20.0% of dairy herds had at least one positive test result. Though lower than in previous years, there was no clear trend in the proportion of positive tests over time. In antigen testing herds, 1.5% of tests from antigen positive herds were positive, which was 0.4% of tests from all antigen testing herds. Dairy herds and larger herds were more likely to join BVDFree and dairy herds were also more likely to antigen test than beef breeder herds. Larger herds, herds that used individual antigen testing and herds that had BVD positive test results were more likely to continue submitting tests to BVDFree. Conclusions: The findings provide a benchmark for the status of BVD control in England; continued analysis of test results will be important to assess progress towards eradication.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5687
Author(s):  
Georgia Stewart ◽  
Andrew Chantry ◽  
Michelle Lawson

Multiple myeloma accounts for 1% of all new cancers worldwide. It is the second most common haematological malignancy and has a low five-year survival rate (53.2%). Myeloma remains an incurable disease and is caused by the growth of malignant plasma cells in the bone marrow. Current anti-myeloma therapies (conventional chemotherapies, immunomodulatory drugs i.e., thalidomide and its’ analogues, proteasome inhibitors, monoclonal antibodies, and radiotherapy) initially substantially debulk tumour burden, but after a period of remission ‘plateau phase’ disease invariably relapses due to tumour recrudescence from foci of minimal residual disease (MRD) and accumulating drug resistance. Therefore, there is a compelling clinical need for the development of novel treatment regimens to target MRD and effectively eliminate all remaining tumour cells. This review will discuss the potential use of oncolytic virus (OV) therapies in the treatment of myeloma. Specifically, it will focus on preclinical studies using DNA viruses (adenovirus (Ad), vaccinia virus (VV), myxoma virus (MYXV), and herpes simplex virus (HSV)), RNA viruses (reovirus (reo), coxsackie virus, measles virus (MV) and bovine viral diarrhoea virus (BVDV), and vesicular stomatitis virus (VSV)), and on four types of viruses (VV, reo, MV-NIS and VSV-IFNβ-NIS) that have been assessed clinically in a small number of myeloma patients.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Jae-Yeon Park ◽  
Jihoon Ryu ◽  
Jung-Eun Park ◽  
Eui-Ju Hong ◽  
Hyun-Jin Shin

AbstractIn this study, we investigated the role of heat shock protein 70 (HSP70) in porcine epidemic diarrhoea virus (PEDV) replication. We found that PEDV infection induced strong HSP70 overexpression in the very early stage of infection. We also confirmed that HSP70 overexpression increased the speed of PEDV replication, resulting in the generation of more virions. In contrast, knockout of HSP70 in cells significantly downregulated PEDV protein expression, resulting in a significant reduction in PEDV replication. Most importantly, we confirmed that among the structural proteins of PEDV, membrane (M) proteins have this important role. We found that membrane proteins control cellular HSP70 expression in PEDV-infected cells. We confirmed HSP70/M complex formation by both immunoprecipitation and immunofluorescence assays. Additionally, PEDV M overexpression induced strong HSP70 expression. All our results clearly confirmed that in PEDV-infected cells, the M protein plays a very important role in PEDV replication in collaboration with HSP70.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258318
Author(s):  
Marta Antas ◽  
Monika Olech ◽  
Anna Szczotka-Bochniarz

Porcine epidemic diarrhoea (PED) is a highly contagious enteric viral disease of pigs with a high morbidity and mortality rate, which ultimately results in huge economic losses in the pig production sector. The etiological agent of this disease is the porcine epidemic diarrhoea virus (PEDV) which is an enveloped, positive single-stranded RNA virus. The aim of this study was to perform molecular characterization of PEDV to identify the strains circulating in Poland. In this study, 662 faecal samples from 2015 to 2021 were tested with reverse transcription quantitative real-time PCR (RT-qPCR) and the results showed that 3.8% of the tested samples revealed a positive result for PEDV. A phylogenetic analysis of the complete genome and complete S gene sequences showed that Polish PEDV strains belonged to the G1b (S-INDEL) subgroup and were closely related to the European PEDV strains isolated from 2014 to 2019. Furthermore, RDP4 analysis revealed that the Polish PEDV strains harboured a recombinant fragment of ~400 nt in the 5’ end of S gene with PEDV and swine enteric coronavirus (SeCoV) being the major and minor parents, respectively. Antigenic analysis showed that the aa sequences of neutralizing epitopes were conserved among the Polish PEDV strains. Only one strain, #0100/5P, had a unique substitution in the COE epitope. However, Polish PEDV strains showed several substitutions, especially in the COE antigen, as compared to the classical strain CV777. To the best of our knowledge, this is the first report concerning the molecular characterization of porcine epidemic diarrhoea virus strains, as well as the first phylogenetic analysis for PEDV in Poland.


2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Thomas Walther ◽  
Barbara Bruhn ◽  
Olaf Isken ◽  
Norbert Tautz

Pestiviruses like bovine viral diarrhoea virus (BVDV) and classical swine fever virus (CSFV) belong to the family Flaviviridae. A special feature of the Flaviviridae is the importance of nonstructural (NS) proteins for both genome replication and virion morphogenesis. The NS2-3-4A region and its regulated processing by the NS2 autoprotease and the NS3/4A protease plays a central role in the pestiviral life cycle. We report the identification and characterization of a novel internal cleavage in BVDV NS2, which is mediated by the NS3/4A protease. Further mapping using the NS2 of BVDV-1 strain NCP7 showed that cleavage occurs between L188 and G189. This cleavage site represents a novel sequence motif recognized by the NS3/4A protease and is conserved between the pestivirus species A, B and D. Inhibition of this internal NS2 cleavage by mutating the cleavage site did not cause obvious effects on RNA replication or virion morphogenesis in cultured cell lines. Accordingly, this novel internal NS2 cleavage adds an additional layer to the already complex polyprotein processing of Pestiviruses and might further extend the repertoires of the multifunctional NS2. However, unravelling of the functional relevance of this novel processing event in NS2, therefore, awaits future in vivo studies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Andrea Franziska Huser ◽  
Jessica Grace Schär ◽  
Claudia Bachofen ◽  
Elena de Martin ◽  
Jasmine Portmann ◽  
...  

Bovine viral diarrhoea virus (BVDV) and Border disease virus (BDV) are closely related pestiviruses of cattle and sheep, respectively. Both viruses may be transmitted between either species, but control programs are restricted to BVDV in cattle. In 2008, a program to eradicate bovine viral diarrhoea (BVD) in cattle was started in Switzerland. As vaccination is prohibited, the cattle population is now widely naïve to pestivirus infections. In a recent study, we determined that nearly 10% of cattle are positive for antibodies to BDV. Here, we show that despite this regular transmission of BDV from small ruminants to cattle, we could only identify 25 cattle that were persistently infected with BDV during the last 12 years of the eradication program. In addition, by determining the BVDV and BDV seroprevalence in sheep in Central Switzerland before and after the start of the eradication, we provide evidence that BVDV is transmitted from cattle to sheep, and that the BVDV seroprevalence in sheep significantly decreased after its eradication in cattle. While BDV remains endemic in sheep, the population thus profited at least partially from BVD eradication in cattle. Importantly, on a national level, BVD eradication does not appear to be generally derailed by the presence of pestiviruses in sheep. However, with every single virus-positive cow, it is necessary to consider small ruminants as a potential source of infection, resulting in costly but essential investigations in the final stages of the eradication program.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1263
Author(s):  
Caitlin A. Evans ◽  
Michael P. Reichel

Bovine viral diarrhoea virus (BVDV) is an economically important and highly prevalent virus of domestic cattle. Infections with BVDV may lead to both, reproductive and immunological effects that can result in widespread calf losses and increased susceptibility to diseases, such as mastitis and respiratory disease. While BVDV is generally considered to be host specific, it and other Pestivirus species, such as Border disease virus (BDV) in sheep, have been shown to be infecting species other than those from which they were originally isolated from. Recently BVDV was placed on the OIE’s list of notifiable disease and control and eradication programmes for BVDV have been developed throughout much of Europe, the United States, and the United Kingdom. While some countries, including Sweden and Ireland have successfully implemented eradication programmes, other countries such as New Zealand and Australia are still in the early stages of BVDV control. Despite effective control methods, incursions of BVDV into previously cleared herds still occur. While the cause of these incursions is often due to lapses in control methods, the ability of ruminant pestiviruses to infect species other than cattle poses the question as to whether non-bovine species could be impeding the success of BVDV eradication and control. As such, the aim of this review is to make mention of what is known about the cross-species transmission of BVDV, BDV and other pestiviruses between cattle and non-bovine ungulate species and draw conclusions as to the risk non-bovine species pose to the successful control and eradication of BVDV from cattle.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1188
Author(s):  
Tinka Jelsma ◽  
Joris J. Wijnker ◽  
Bregtje Smid ◽  
Eline Verheij ◽  
Wim H. M. van der Poel ◽  
...  

The aim of this pilot study was to determine viral loads and distribution over the total length, at short distances, and in the separate layers of the intestine of virus-infected animals for future inactivation studies. Two calves, two pigs, and two goats were infected with bovine viral diarrhoea virus (BVDV), classical swine fever virus (CSFV), and peste des petits ruminants virus (PPRV), respectively. Homogenously distributed maximum BVDV viral loads were detected in the ileum of both calves, with a mean titer of 6.0 log10 TCID50-eq/g. The viral loads in colon and caecum were not distributed homogenously. In one pig, evenly distributed CSFV mean viral loads of 4.5 and 4.2 log10 TCID50-eq/g were found in the small and large intestines, respectively. Mucosa, submucosa, and muscular layer/serosa showed mean viral loads of 5.3, 3.4, and 4.0 log10 TCID50-eq/g, respectively. Homogenous distribution of PPRV was shown in the ileum of both goats, with a mean viral load of 4.6 log10 TCID50-eq/g. Mean mucosa, submucosa, and muscular layer/serosa viral loads were 3.5, 2.8, and 1.7 log10 TCID50-eq/g, respectively. This pilot study provides essential data for setting up inactivation experiments with intestines derived from experimentally infected animals, in which the level and the homogeneous distribution of intestinal viral loads are required.


Sign in / Sign up

Export Citation Format

Share Document