scholarly journals Outcrop observation of soft-sediment deformation structures of the Mesoproterozoic Wumishan Formation, Yongding River Valley, Beijing, China

2012 ◽  
Vol 1 (1) ◽  
pp. 90
Geologos ◽  
2014 ◽  
Vol 20 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Laura P Perucca ◽  
Enrique Godoy ◽  
Ana Pantano

Abstract Evidence of earthquake-induced liquefaction features in the Acequión river valley, central western Argentina, is analysed. Well-preserved soft-sediment deformation structures are present in Late Pleistocene deposits; they include two large slumps and several sand dikes, convolutions, pseudonodules, faults, dish structures and diapirs in the basal part of a shallow-lacustrine succession in the El Acequión River area. The water-saturated state of these sediments favoured deformation. All structures were studied in a natural trench created as a result of erosion by a tributary of the Acequión River, called El Mono Creek. They form part of a large-scale slump system. Two slumps occur in the western portion of the trench and must have moved towards the ENE (70°), where the depocentre of the Boca del Acequión area is situated. Considering the spatial relationship with Quaternary faults, the slumps are interpreted as being due to a seismic event. The thickest dikes in the El Mono Creek trench occur in the eastern portion of the trench, indicating that the responsible earthquake was located to the east of the study area, probably at the Cerro Salinas fault system zone. The slumps, sand dikes and other soft-sediment deformation features are interpreted as having been triggered by earthquakes, thus providing a preliminary palaeoseismic record of the Cerro Salinas fault system and extending the record of moderate-to high-magnitude earthquakes in central western Argentina to the Late Pleistocene.


Author(s):  
BV Lakshmi ◽  

Soft-sediment deformation structures were identified along Nandakini River valley near Chamoli village of Garhwal Lesser Himalaya. The deformation, in each outcrop, is restricted to a single stratigraphic layer bounded by undeformed flat-lying layers, eliminating the influence of slope failure. The structures are multiple liquefaction features like sand dikes, flame structures, pear-drop disturbance and downward warping of beds. The preferred interpretation is that the deformations resulted from earthquake-induced liquefaction and their existence adjacent to the Nandaprayag Fault can be related to episodic seismicity that occurred along this fault. However, more data and dating technique is needed to constrain the timing and distance to the causative seismic source. It is possible that more than one earthquake has effected the deformations.


Terra Nova ◽  
1997 ◽  
Vol 9 (5) ◽  
pp. 208-212 ◽  
Author(s):  
P.G. Silva ◽  
J.C. Canaveras ◽  
S. Sanchez-Moral ◽  
J. Lario ◽  
E. Sanz

2000 ◽  
Vol 49 (4) ◽  
pp. 197-214 ◽  
Author(s):  
Dan Bowman ◽  
Dorit Banet-Davidovich ◽  
Hendrik J. Bruins ◽  
Johannes Van der Plicht

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 721
Author(s):  
Ukhwan Byun ◽  
A.J. (Tom) van Loon ◽  
Kyoungtae Ko

The Gyeokpori Formation in the Buan volcanic area primarily contains siliciclastic rocks interbedded with volcanoclastics. These sediments are characterized by a variety of soft-sediment deformation structures (SSDS). The SSDS in the Gyeokpori Formation are embedded in poorly sorted conglomerates; slump folds are also present in the formation. The deformation mechanisms and triggers causing the deformation are not yet clear. In the present study, the trigger of the SSDS in the Gyeokpori Formation was investigated using facies analysis. This included evaluation of the reworking process of both cohesive and non-cohesive sediments. The analysis indicates that the SSDS are directly or indirectly associated with the alternation of conglomerates and mud layers with clasts. These layers underwent non-cohesive and cohesive deformation, respectively, which promoted SSDS formation. The slump folds were controlled by the extent of cohesive and non-cohesive deformation experienced by the sediment layers in the slope environment. The SSDS deformation style and morphology differ, particularly in the case of reworking by slump activity. This study contributes to the understanding of lacustrine slope-related soft-sediment deformation structures.


Fractals ◽  
2018 ◽  
Vol 26 (01) ◽  
pp. 1850018 ◽  
Author(s):  
YOSHITO NAKASHIMA ◽  
JUNKO KOMATSUBARA

Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.


Sign in / Sign up

Export Citation Format

Share Document